

i

Copyright © 2023 by Mubashar Bilal

All rights reserved. No part of this thesis may be reproduced, distributed, or

transmitted in any form or by any means, including photocopying, recording, or

other electronic or mechanical methods, by any information storage and retrieval

system without the prior written permission of the author.

ii

I dedicate this work to my respectful teachers and my parents who helped me to

accomplish this work. Especially to my parents because without their prayers,

moral support and best wishes i couldn’t accomplish this work.

CERTIFICATE OF APPROVAL

Evaluation and Correction of Inconsistency and

Incompleteness in DBpedia Knowledge Graph

by

Mubashar Bilal

(MCS193038)

THESIS EXAMINING COMMITTEE

S. No. Examiner Name Organization
(a) External Examiner Dr. Munir Ahmad BIIT, Rawalpindi
(b) Internal Examiner Dr. Mohammad Masroor Ahmed CUST, Islamabad
(c) Supervisor Dr. Muhammad Abdul Qadir CUST, Islamabad

Dr. Muhammad Abdul Qadir
Thesis Supervisor

January, 2023

Dr. Abdul Basit Siddiqui Dr. Muhammad Abdul Qadir
Head Dean
Dept. of Computer Science Faculty of Computing
January, 2023 January , 2023

iv

Author’s Declaration

I, Mubashar Bilal hereby state that my MS thesis titled “Evaluation and

Correction of Inconsistency and Incompleteness in DBpedia Knowledge

Graph” is my own work and has not been submitted previously by me for tak-

ing any degree from Capital University of Science and Technology, Islamabad or

anywhere else in the country/abroad.

At any time if my statement is found to be incorrect even after my graduation,

the University has the right to revoke my MS Degree.

(Mubashar Bilal)

Registration No: MCS193038

v

Plagiarism Undertaking

I solemnly declare that research work presented in this thesis titled “Evaluation

and Correction of Inconsistency and Incompleteness in DBpedia Knowl-

edge Graph” is solely my research work with no significant contribution from any

other person. Small contribution/help wherever taken has been duly acknowledged

and complete thesis has been written by me.

I understand the zero tolerance policy of the HEC and Capital University of Science

and Technology towards plagiarism. Therefore, I as an author of the above titled

thesis declare that no portion of my thesis has been plagiarized and any material

used as reference is properly referred/cited.

I undertake that if I am found guilty of any formal plagiarism in the above titled

thesis even after award of MS Degree, the University reserves the right to with-

draw/revoke my MS degree and HEC and the University have the right to publish

my name on the HEC/University website on which names of students are placed

who submitted plagiarized work.

(Mubashar Bilal)

Registration No: MCS193038

vi

Acknowledgement

Thanks to Allah Almighty for blessing me with wisdom and strength to complete

the dissertation. Being an MS graduate at Capital University of Science and

Technology has been a magnificent and challenging experience. During the degree,

I have found clear guidelines in shaping my academic career. Here is a humble

tribute to all those people. I would like to express my sincerest appreciation to

my enthusiastic supervisor, Dr. Muhammad Abdul Qadir for his supervision,

assistance, and immense knowledge. I am sincerely thankful to him for his constant

support, motivation, and patience. His invaluable help of constructive comments

and suggestions throughout the thesis work has contributed to the success of this

research. It has been an amazing experience and I thank him wholeheartedly for

his tremendous support. I would like to thank my family who had motivated

me continuously to achieve this milestone. A word of applause for my friends and

classmates who had assisted me in sharing knowledge and other resources required

to conduct research. Thank you all.

(Mubashar Bilal)

vii

Abstract

A knowledge graph structures domain specific data (concepts and relations) in

the form of a graph which can be meaningfully interpreted by machines to gener-

ate relevant answers for queries. DBpedia is one of the popular knowledge graph

extracted from Wikipedia. Evaluation of a knowledge graph for inconsistent or

incomplete knowledge in order to get precise and correct result of the queries, is

crucial for a reliable knowledge graph. This thesis evaluates DBpedia for inconsis-

tency and incompleteness. These errors could be due to one of the three possible

reasons. First, the errors in the source data (Wikipedia) that may be due to neg-

ligence or less knowledge provided in the Wikipedia. Second, the errors in the

conversion process which could either be due to DBpedia mappings or some error

in the DBpedia extraction logic, and lastly, errors in the DBpedia ontology which

might be due to wrong hierarchy of classes (concepts), properties (relations) or in-

correct domain or range definitions etc. It is demonstrated that how these errors

can be discovered and corrected by thorough investigation of DBpedia knowledge

graph in four phases, that is discovery phase, analysis phase, correction phase

and evaluation phase. More than 5300 inconsistent and incomplete instances were

discovered in the knowledge graph in the discovery phase. Another activity in

the discovery phase is the evaluation of DBpedia ontology for incorrect classes or

relations. Incorrect domain and range definitions of many relations and incorrect

hierarchy of the concepts were discovered. After analysis and correction of these

errors, same investigation process is used for the evaluation. Finally results are

compared with the previous errors from the discovery phase. 98% of these errors

were removed by making changes in the DBpedia extraction framework, ontol-

ogy and mappings. Twelve new concepts and fifteen mappings were introduced

in the DBpedia ontology to resolve the incompleteness. DBpedia ontology was

also analyzed for inconsistency and incompleteness. Four inconsistencies in re-

lations and two inconsistent hierarchies were discovered in ontology, which were

also corrected. All the corrections which were made in this thesis were shared with

DBpedia community, they agreed and accepted the changes with appreciation.

Contents

Author’s Declaration iv

Plagiarism Undertaking v

Acknowledgement vi

Abstract vii

List of Figures xi

List of Tables xii

Abbreviations xiv

1 Introduction 1
1.1 Knowledge Graph . 1

1.1.1 Difference Between Knowledge Graph and Database 2
1.1.2 Knowledge Graph Process and Characteristics 2

1.2 DBpedia . 3
1.3 Structure of DBpedia . 5

1.3.1 Ontology: . 5
1.3.2 Mappings: . 5
1.3.3 Extraction Framework: . 6

1.4 Errors in DBpedia . 6
1.4.1 Inconsistency . 7
1.4.2 Incompleteness . 8
1.4.3 Redundancy . 8

1.5 Research Gap . 9
1.6 Research Questions . 9
1.7 Scope of Research . 10
1.8 Methodology . 11

2 Literature Review 13
2.1 Discovering and Removing Inconsistencies 13
2.2 Knowledge Graph Completion . 20

viii

ix

2.3 Research Gap . 24

3 Discovery, Analysis and Correction of Errors 26
3.1 Introduction . 26
3.2 Discovery of Semantic Errors Using Semantically Enriched Com-

plex Logic . 28
3.2.1 Multiple Birth Dates Logic for Discovering Inconsistency . . 28

3.2.1.1 Discovery of Multiple Birth Dates Inconsistency . 28
3.2.1.2 Analysis of Multiple Birth Dates Inconsistency . . 29
3.2.1.3 Discovery of Self Parents Inconsistency 30
3.2.1.4 Analysis of Self Parents Inconsistency 31
3.2.1.5 Discovery of Same Values for Distinct Properties

Inconsistency . 31
3.2.1.6 Analysis of Same Values for Distinct Properties

Inconsistency . 32
3.2.1.7 Discovery of Incorrect Association of Information

Inconsistency . 32
3.2.1.8 Analysis of Incorrect Association of Information

Inconsistency . 34
3.2.1.9 Solution for Inconsistencies from Multiple Birth

Dates Logic . 34
3.2.1.10 Evaluation of Proposed Solution 36

3.2.2 Same Parent and Spouse Logic for Discovering Inconsistency 37
3.2.2.1 Discovery of Same Parent and Spouse Inconsistency 38
3.2.2.2 Analysis of Same Parent and Spouse Inconsistency 39
3.2.2.3 Solution for Same Parent and Spouse Inconsistency 44
3.2.2.4 Evaluation of Proposed Solution 45

3.2.3 Incorrect Entity Type Logic for Discovering Incompleteness 45
3.2.3.1 Discovery of Incompleteness 46
3.2.3.2 Analysis of Incompleteness 48
3.2.3.3 Solution for Incompleteness 49
3.2.3.4 Evaluation of Proposed Solution 52

3.3 Discovery of Semantic Errors by Analysis of Ontology 52
3.3.1 Discovery of Incorrect Domain Inconsistency 53
3.3.2 Analysis of Incorrect Domain Inconsistency 54
3.3.3 Solution of Incorrect Domain Inconsistency 55

4 Evaluation of Results 61
4.1 Evaluation . 61

4.1.1 Test Case 1 (Multiple Birth Dates Inconsistency) 62
4.1.2 Test Case 2 (Self Parents Inconsistency) 63
4.1.3 Test Case 3 (Same Values for Distinct Properties Inconsis-

tency) . 64
4.1.4 Test Case 4 (Incorrect Association of Information Inconsis-

tency) . 65

x

4.1.5 Test Case 5 (Same Parent and Spouse Inconsistency) 66
4.1.6 Test Case 6 (Incompleteness) 67
4.1.7 Test Case 7 (Incorrect Domain Inconsistency) 68

5 Conclusion and Future Work 70
5.1 Conclusion . 70
5.2 Future Work: . 71

Bibliography 72

List of Figures

1.1 Knowledge graph process . 2
1.2 Wikipedia to DBpedia process[5] 5
1.3 DBpedia extraction framework working 6
1.4 Methodology diagram . 11

3.1 Discovery phase experiments . 27
3.2 Experimental flow . 27
3.3 DBpedia framework adhoc page for Karen extraction 36
3.4 DBpedia class hierarchy . 55
3.5 DBpedia updated class hierarchy 55
3.6 Discovered errors summary . 60

4.1 Results summary . 69

xi

List of Tables

1.1 DBpedia instances [4] . 4
1.2 DBpedia profile of Karen McCarron [8] 7
1.3 Wikipedia infobox academic template [9] 8

2.1 Analysis of studies focused on inconsistencies 17
2.2 Analysis of studies focusing on knowledge graph completion 23

3.1 Wikipedia info box Karen Frank-McCarron [9] 29
3.2 Wikipedia info box Kate McCarron [9] 30
3.3 Self parent inconsistency [8] . 31
3.4 Same values for distinct properties inconsistency [8] 32
3.5 Wikipedia info box Helene Demuth [9] 33
3.6 DBpedia page Helene Demuth [8] 33
3.7 DBpedia framework Karen extraction result 37
3.8 Same parent and spouse query results 38
3.9 Wikipedia info box Jigme Dorji Wangchuck [9] 40
3.10 DBpedia page Jigme Dorji Wangchuck [8] 41
3.11 Wikipedia info box backend Jigme Dorji Wangchuck [9] 42
3.12 Remaining inconsistent records of same parent and spouse query . . 45
3.13 Incorrect entity type query results 46
3.14 DBpedia profile of Lucie Fink [8] 47
3.15 Wikipedia page backend of Lucie Fink [9] 48
3.16 Wikipedia info boxes with no classes in DBpedia 49
3.17 Wikipedia info boxes with no mappings in DBpedia 49
3.18 Wikipedia page backend of Lucie Fink [9] 50
3.19 Info box youtube personality mapping to youtuber class 51
3.20 Remaining incomplete instances . 52
3.21 Birth date property data [8] . 53
3.22 Wikipedia info box animal . 54
3.23 DBpedia person class [8] . 56
3.24 DBpedia birth date property updated data [8] 57
3.25 DBpedia birth place property data [8] 58
3.26 DBpedia death date property data [8] 59
3.27 DBpedia death place property data [8] 59

4.1 Description of test cases . 61

xii

xiii

4.2 Test case 1. 62
4.3 Test case 2. 63
4.4 Test case 3. 64
4.5 Test case 4. 65
4.6 Test case 5. 66
4.7 Test case 6. 67
4.8 Test case 7. 68

Abbreviations

AST Abstract Syntax Tree

Dbo DBpedia Ontology

DBP DBpedia

Dbp DBpedia Property

DSR Design Science Research

KG Knowledge Graph

ORE Ontology Repair and Enrichment

OWL Web Ontology Language

QAKIS Question Answering WikiFramework-based System

RDF Resource Description Framework

Regex Regular Expression

SPARQL Simple Protocol and RDF Query Language

UMBEL Upper Mapping and Binding Exchange Layer

xiv

Chapter 1

Introduction

1.1 Knowledge Graph

Semantically annotated structured data as an instance of ontology is known as

Knowledge Graph. It is used to store interlinked entities. The domain data in the

knowledge graph follows a domain definition in the form of ontology to enable us

to intelligently query the data [1]. It stores information usually in resource de-

scription framework (RDF) triple format comprising of concepts and relationship

between them as per the domain structure. A knowledge graph is a special kind

of database which stores knowledge in a machine readable form and provides a

means for information to be collected, organized, shared, searched and utilized.

Queries like all cities with low criminality, warm weather and open jobs can be

answered by using these knowledge graphs.

Ontology(usually comprises of domain concepts in form of classes and relations

between them) provides the required structure to knowledge graph, therefore a

slight change in the ontology can cause the knowledge graph to regenerate itself.

This can be advantageous when we want to correct certain relations between con-

cepts as per domain knowledge. We only need to correct the relevant ontology

classes and properties and all the related instances which might be thousands in

number will automatically be corrected by the reasoning system of the knowledge

graph. There are variety of applications and use cases of knowledge graph which

includes journalism, entertainment, and pharmaceuticals [2] etc. There are many

1

Introduction 2

publicly available knowledge graphs which performs very well in answering rele-

vant queries. These knowledge graphs are mostly populated from semi-structured

or unstructured data by extracting data from the source, annotating it with do-

main specific concepts or properties and storing it as RDF triples. Among them

are DBpedia, Yago and Wikidata etc [2].

1.1.1 Difference Between Knowledge Graph and Database

A knowledge graph is a graph-based data model that represents real-world entities

and the relationships between them. It is different from a traditional database,

which stores data in tables with predefined schemas and is optimized for fast

data retrieval and updates. Knowledge graphs, on the other hand, are designed

to represent complex and interconnected domain specific data and to support

querying and reasoning over the data. They use a domain specific schema that

allows for the representation of arbitrary relationships between entities and the

incorporation of external knowledge sources.[2]

1.1.2 Knowledge Graph Process and Characteristics

Figure 1.1 illustrates the creation of knowledge graph process in which a converter

is used to annotate unstructured or semi-structured data into a semantic web data

which comprises of a domain ontology, instances and URIs.

Figure 1.1: Knowledge graph process

A good knowledge graph complies with following three characteristics [1, 2]:

Introduction 3

1. Completeness: It should contain all the information about a domain that

is supposed to be in it or can be inferred from the available concepts and

relations.

A KG which doesn’t have all the concepts about a domain which is meant

to be in it is considered incomplete.

2. Consistency: It should be free from ambiguous or contradictory statements

to define concepts and relations about a domain.

A KG which has statements that are ambiguous is considered inconsistent.

3. Conciseness: It should not be redundant and shouldn’t contain statements

which can be generated from already given information, for-example age can

be calculated from birth date therefore only birth date is sufficient.

A KG which contains information that can be deduced from existing infor-

mation is considered redundant.

A large amount of data is being generated each day on the web which could be

very useful but the problem with conventional web is that it often does not provide

relevant answers to query. Data becomes a big dump if we can’t find relevant

answers. Knowledge graph solves this problem by storing the unstructured or

semi-structured data in a semantically annotated structured form.

1.2 DBpedia

The DBpedia project was started in 2007 by the University of Leipzig and Uni-

versity of Mannheim. DBpedia is a Knowledge Graph which extracts data mainly

from Wikipedia info boxes and populates it as per the very simple and shallow

multi-domain ontology [3]. DBpedia is a widely used knowledge graph in research

because:

Introduction 4

1. It is not restricted to a particular domain and mostly targets Wikipedia info

boxes, which are publicly available [2].

2. It is available in multiple languages [3].

3. Updated continuously to incorporate changes in the source data [3].

4. Both the source data and Knowledge graph are publicly accessible there-

fore many improvements can be made by analyzing the source data and

knowledge graph (KG).

The DBpedia ontology contains 768 concepts described by 3000 relations and total

instances are more than four million [4].

Table 1.1: DBpedia instances [4]

Instance Type Count

Resource (overall) 4,828,418

Place 967,491

Person 1,592,912

Work 552,115

Species 190,369

Organization 317,867

Other 1,207,664

Figure 1.2 shows the conversion of data from Wikipedia schema to DBpedia

ontology. DBpedia extracts data from Wikipedia and store it in RDF form.Then

different queries can be performed on DBpedia to get relevant answers.

Introduction 5

Figure 1.2: Wikipedia to DBpedia process[5]

1.3 Structure of DBpedia

DBpedia comprises of three main components [4]:

1.3.1 Ontology:

Ontology defines all the concepts (termed as classes) and relations (termed as

properties) about a domain. The classes and properties are created carefully by

the DBpedia research community. As everything is open source and accessible

publicly, it can be updated by the community.

1.3.2 Mappings:

Mappings transforms the information from source namespace to destination names-

pace, in DBpedia knowledge graph from Wikipedia schema (namespace) to DBpe-

dia ontology (namespace). Wikipedia is a semi-structured database that contains

key-value pairs for an entity represented in the info box [3]. DBpedia defines map-

pings that tell which Wikipedia info box key is mapped to which DBpedia property

Introduction 6

whereas type of info box is mapped to DBpedia class, for example Wikipedia Per-

son info box is mapped to DBpedia Person class.

1.3.3 Extraction Framework:

Extraction framework is the tool which populates DBpedia knowledge graph by

extracting data from Wikipedia, considering all the classes and the mappings

available. It consists of following core components [6].

1. Source: It contains Wikipedia pages.

2. WikiParser: Parses each page and convert it into Abstract Syntax Tree

(AST).

3. Extractor: It maps the page nodes to DBpedia classes and properties using

the mappings and ontology definitions.

4. Destination: It publishes the mapped data in the form of RDF triples.

Figure 1.3: DBpedia extraction framework working

DBpedia extraction framework comprises of different extractors for different pur-

pose [6] like PageIdExtractor, InfoboxExtractor, and WikilinkExtractor etc.

1.4 Errors in DBpedia

There could be three types of errors in DBpedia, that is, syntax, logical and

semantic errors. Syntax errors can be discovered by RDF validators, logical errors

by Reasoners like Pellet, fact++ but semantic errors cannot be discovered by

such tools because they are both syntactically and logically correct and real world

Introduction 7

knowledge is required for their discovery [7]. DBpedia knowledge graph contains

different semantic errors such as inconsistency, incompleteness and redundancy.

1.4.1 Inconsistency

Table 1.2 shows DBpedia profile of entity Karen McCarron. There exists an

inconsistency of having more than one birth date which could not be true in real

life for a Person.

Table 1.2: DBpedia profile of Karen McCarron [8]

DBpedia page Karen McCCarron

Type Person

Abstract

Karen Frank-McCarron (born

December 20, 1968) is a German-

born American pathologist con-

victed in Illinois of first degree

murder of her autistic daughter

Katherine “Katie” McCarron.

Birth name Katherine Marie McCarron

Birth date
1968-12-20

2002-07-22

Birth place
Peoria,_Illinois

WestGermany

Introduction 8

1.4.2 Incompleteness

There exist Wikipedia info boxes against which there are no DBpedia classes

to mapped to. One such info box is Infobox Academic. Table 1.3 shows

that this info box contains many important properties like Education, Thesis etc.

The Infobox Academic contains more than 9000 instances but not mapped to

DBpedia due to incomplete definitions of concepts and relations.

Table 1.3: Wikipedia infobox academic template [9]

Infobox Academic

name Academic name

education Education level

thesis_title Complete thesis title

thesis_year
Year in which thesis was com-

pleted

doctoral_advisor Name of doctoral advisor

1.4.3 Redundancy

Birth year and birth date are two separate properties in DBpedia ontology, al-

though birth date is sufficient.

DBpedia contains issues due to problems in any of the three main components,

Ontology, Mappings and/or Extraction Framework. A small issue in these com-

ponents may result in a large amount of incorrect data populated in a knowledge

Introduction 9

graph. Aim of this study is to find those errors in DBpedia, investigate the pos-

sible cause of these errors and then remove the errors by making changes in the

system as required.

A knowledge graph is built to answer relevant and meaningful queries precisely.

If the underlying knowledge graph contains errors, the primary objective of an-

swering the relevant queries cannot be met. Therefore, it is very important to

identify and remove errors from a knowledge graph. Most of the work is done on

incompleteness and inconsistency therefore redundancy is not considered in this

study.

1.5 Research Gap

DBpedia suffers from Incompleteness and Inconsistency problems [2]. The errors

that can cause incorrect and irrelevant results for query must be removed in order

to make it a true semantic web to provide relevant answers.

Research gap is identified by carefully evaluating the literature and with the help

of thorough experiments on DBpedia. See section 2.3

1.6 Research Questions

Following are the research questions which need to be answered in order to fill the

research gap.

1. What are the reasons of inconsistency and incompleteness in DB-

pedia?

There can be different reasons behind inconsistency and incompleteness like

error in source data or error in conversion process. It is required to discover

the source of error(component of DBpedia system responsible for the error).

Introduction 10

Section 3.2.1.9 and section 3.2.2.2 shows the reasons behind inconsistency

problems and section 3.2.3.2 shows the reason of incompleteness problem.

2. How to remove these errors in order to have consistent and com-

plete semantic web?

After discovering errors, it is being needed to eliminate the errors by mod-

ifying either source data or DBpedia components. Different solutions and

ways must be proposed and implemented in order to make DBpedia error

free.

Section 3.2.1.9, 3.2.2.3 and 3.2.3.3 shows the solution of inconsistency and

incompleteness problems.

3. What are the missing concepts and relations in DBpedia ontology

and how to enrich it?

Incomplete definitions of domain are often cause of semantic errors in DB-

pedia, there is a need to discover missing concepts which exist in source data

and then find a way to add them in DBpedia.

Section 3.3.2 shows the missing concepts and relations in DBpedia and sec-

tion 3.3.3 shows how to add missing concepts and relations in DBpedia.

1.7 Scope of Research

The scope of this research is to discover, analyze and remove inconsistency and

incompleteness from DBpedia knowledge graph. The errors will be discovered

using semantically enriched complex queries and analysis of DBpedia ontology.

All the errors will be analyzed by comparing the information in the source data,

looking at the problems in the extraction framework and DBpedia ontology. Then

these errors will be removed by correcting the source of error.

Introduction 11

1.8 Methodology
This study employs design science research (DSR) methodology[10], as illustrated

in Figure 1.4. The first step in this process involves identifying the problem at

hand and formulating research questions. To gain a deeper understanding of the

problem, we review the existing literature and identify any existing techniques

and the challenges they present. DSR aims to produce high-quality, valuable, and

acceptable research that can be published in academic outlets. To discover and

correct different errors in DBpedia knowledge graph, different experiments have

been performed and after correction, results are evaluated using same discovery

process.

Figure 1.4: Methodology diagram

Summary

This chapter explained DBpedia and answered few questions about it like what is

Introduction 12

DBpedia and different components of DBpedia? What are the issues in DBpedia?

How these issues can be resolved?. This chapter also discussed the research gap,

research questions, scope of research and methodology to find and resolve issues.

Chapter 2

Literature Review
This chapter presents literature review and highlights some key issues which led to

the proposed approach. This chapter evaluates studies addressing inconsistency

and incompleteness problems. Based on previous researches literature is catego-

rized into two sections. Section one addresses studies related to inconsistency

problem and section two addresses studies related to incompleteness problem.

2.1 Discovering and Removing Inconsistencies

There are many studies that are addressing the problem of inconsistencies in DB-

pedia. These inconsistencies can exist both in ontology and instances. Studies

[7, 11–13] focused on discovering inconsistencies using different techniques only

and no solution to inconsistencies were provided, however studies [14–19] along

with discovery also provided solutions to the discovered inconsistencies.

Sack H. et al. [7] mentioned that there exists three types of errors in knowledge

graph Syntax errors, Logical errors and Semantic errors. Syntax errors can be

detected by RDF parser, logical errors can be detected by using some reasoner

like fact++. However semantic errors are very difficult to detect because they

require real world knowledge. To overcome this difficulty author presented an

approach for the detection of semantic errors in the dbpedia knowledge graph by

transforming the semantic errors into logical errors which can then be detected

by some reasoner. They enriched the ontology with domain, range and disjoint

13

Literature Review 14

axioms so that contradicting logical statements arise which will be detected.

Disjointness axioms help in consistency checking and evaluation of ontologies.

Disjointness modeling is challenging and time taking. This study [11] created an

approach which helps to enrich learned or manual ontologies with the help of dis-

jointness axioms. Disjointness axioms were learned using association rule mining

technique. This approach helps to increase richness, usefulness and quality of

ontology. This approach behave like a human annotators. Highest accuracy of

90.9% was achieved by this model. For disjointness modeling lessons from human

annotators were learned.

Yanfang Ma T. et al. [12] extends the existing study [11] of association rule min-

ing using Apriori algorithm to discover inconsistencies in the DBpedia knowledge

graph. They found five problems in the existing approach. First problem was that

classes with no instances could not be included in the transaction table, second

problem was that incorrect rules of child class disjoint with parent class were gen-

erated, third problem was that incorrect rules of parent class disjoint with child

class were generated, fourth problem was that contradictory rules were generated

which stated that class A is subclass of class B but class B is also disjoint with

class A, fifth problem was that for many of the disjointness rules no symmetric

rules were generated. After discovering the problems, they came to conclusion

that ignoring class hierarchy during rule mining was one of the most important

reason for the mentioned five problems. A modified existing technique was im-

plemented considering class hierarchy and then using these rules, they detected

inconsistencies in DBpedia and zhishi.me. They worked on detection of incon-

sistencies, however investigation of reason behind inconsistencies and removal of

inconsistencies is not being done in the research.

Wikipedia info box keys are mapped to corresponding DBpedia classes and this

is mostly done by community. Due to language and knowledge differences these

mappings are not consistent. One can see the mappings manually to know the

inconsistencies. Kontokostas D. et al. [13] presented a machine learning approach

Literature Review 15

for automatic detection of incorrect mappings. They utilized different language

datasets and then defined some rules to filter out the incorrect mappings by taking

advantage of overlapping of different languages dataset. They achieved highest

performance for Multilayer Perceptron (94.25%). The paper provides a generic

and automatic approach as compared to domain specific approach, however man-

ual annotation of different languages datasets is required for training and testing

purposes.

Hervieux N. et al [14] proposed the supervised method to detect incorrect type

assignment to entities and also predict type for unseen entities. They converted

entities into vectors, Wikipedia entities into word2vec and DBpedia entities re-

course2vec. These vectors are used as a feature set for machine learning classifiers

that detect if the type assigned to an entity is incorrect. The intuition behind this

approach is that vectors of entities of the same type will be closer to one another

in an n-dimensional continuous vector space than vectors of entities of different

types and most entities of the same type share the same properties. Their results

are promising and effective as they used external data of Wikipedia to reduce

error. Three classifiers (Nearest Centroid, kNN, Na¨ıve Bayes) are used in the

research and their best performing classifier is Nearest Centroid with accuracy of

97%. They also predicted types of unseen entities.

Villata S. et al. [15] explained that when a same query is given to different DBpe-

dia chapters, they might result in conflicting results or one might subsume others,

therefore author proposed an automatic framework for the detection of such incon-

sistencies in the answers returned by a query endpoint. They discovered semantic

relations between different answers. They implemented bipolar fuzzy labeling

algorithm to assign the acceptance score. They utilized QAKIS (Question An-

swering WikiFramework-based System) for the implementation and evaluation of

their approach and they achieved highest F-measure of 0.97.

N.A Khan [16] focused on the family relations and manually found number of in-

consistencies in Wikipedia and DBpedia related to family relations and removed

Literature Review 16

them. Author wrote a number of queries which retrieved inconsistent results and

then investigated the reasons behind these inconsistencies and removed those from

Wikipedia and DBpedia. Author extended DBpedia ontology with new family

classes and corrected domain and range of few properties. This resulted in re-

moval of a lot of inconsistent results. Wikipedia profiles of different entities were

manually corrected to remove inconsistencies.

Sheng et al. [17] extended the DBpedia ontology with UMBEL(Upper Mapping

and Binding Exchange layer) which is a subset of Opencyc knowledge graph to

obtain disjoint axioms for dbpedia for discovery of inconsistencies in DBpedia.

Author used a MapReduce model to discover five different types of Inconsistencies

in DBpedia. Those inconsistencies are undefined classes/properties, violation of

range of data type properties by literals, one class is subclass of other class and

at the same time disjoint with that class, class is a subclass of two disjoint classes

and entity definition of members of disjoint class is not valid. Author also ana-

lyzed each type of inconsistency and then proposed a solution for each of the five

inconsistencies.

DBpedia uses huge data from Wikipedia. DBpedia is used by many projects to de-

pict and relate different objects. Wikipedia’s content is growing with the passage

of time. As DBpedia gets data from Wikipedia, it must be updated continuously.

DBpedia is either updated through periodically altered large dumps of data or

through a software known as DBpedia Live which update RDF triples. When

data is in different languages then it can create inconsistencies during extrac-

tion. In study [18], inconsistent classes set was defined. Then the frequency of

occurrence of these inconsistencies were observed. This approach tried to figure

out inconsistencies (which were in languages other than English) at the time of

extraction. Author proposed a mechanism to correct inconsistencies in DBpedia

live. Two types of inconsistencies were addressed which are Domain Violation and

Range Violation. By using this mechanism Range inconsistencies were dropped to

17.35% from 33.58% and Domain inconsistencies dropped to 7.62% from 13.38%.

Effectiveness was still limited because version of resource in foreign language didn’t

Literature Review 17

had its equivalent in English Language.

DBpedia is the knowledge graph which extract data from Wikipedia. It depicts

and relate different objects. But it is not error free. Range Violation error is

the major error in DBpedia knowledge base. The study [19] discussed the range

violation error and proposed the method to remove these errors. This error occurs

when value of the object is not in the required range of triples. For example, the

triple <dbr :Sedo, dbo : locationCountry, dbr : Cologne> is erroneous because

Cologne is city but predicate required object which is of type Country. Because

of Range Violation errors, information in Dbpedia is erroneous and it also effects

other application which are using Dbpedia as a data source. Because of Human

error, Wikipedia info boxes also contain inconsistencies. This method finds the

inconsistent objects from reduced search space and replace with consistent objects.

To calculate the score of candidate objects, two methods are used which are Graph

Method and Keyword method. Table 2.1 shows the contribution, strength and

weakness of existing studies related to discovering and removing inconsistencies.
Table 2.1: Analysis of studies focused on inconsistencies

Contribution Strength Weakness

[7] Axioms like properties,

range and domain restric-

tion has been added to im-

prove DBpedia Ontology.

They enriched the on-

tology and detected

inconsistencies using

enriched ontology as

well.

Their primary focus

was on discovering er-

rors and didn’t pro-

vide an approach to

resolve errors.

[11] Use of correlation anal-

ysis, and Negative Associa-

tion Rule Mining for learn-

ing disjointness to enrich

knowledge repositories.

They discovered

disjointness among

different classes and

added the disjointness

axioms to DBpedia

ontology for detecting

inconsistency.

They did not propose

an approach to correct

the errors.

Literature Review 18

Contribution Strength Weakness

[12] Detection of inconsis-

tencies occured due to ig-

noring class hierarchy dur-

ing rule mining.

They improved the

previous study of in-

consistency detection

using association rule

mining.

They did not focus

on discovering incom-

pleteness problem and

providing solution for

inconsistencies

[13] Presented a machine

learning approach for auto-

matic detection of incorrect

mappings. They utilized

different language datasets

and then defined some rules

to filter out the incorrect

mappings by taking advan-

tage of overlapping of differ-

ent languages dataset.

One of the few pa-

pers which targeted

mappings for incon-

sistency detection,

many of the errors

are resolved without

modifying Wikipedia

schema or DBpedia

ontology.

The proposed ap-

proach didn’t provide

a scheme to modify

ontology or extraction

framework.

[14] Detect assignment of

erroneous type by convert-

ing entities into vectors and

by comparing similarities

between them.

One of few papers

which discovered er-

rors in the extraction

process and also pro-

vided solution.

They did not consider

extraction framework

as the source of error.

[15] Proposed an automatic

framework for the detec-

tion of inconsistencies oc-

cured due to conflicted an-

swers returned by a query

endpoint.

A more close approach

to detect inconsistent

and incomplete in-

stances with real

world knowledge from

other endpoints.

They did not provide

solution if all the an-

swers provided by all

endpoints are wrong

or less answers are cor-

rect.

Literature Review 19

Contribution Strength Weakness

[16] Focused on the fam-

ily relations and manually

found number of inconsis-

tencies in Wikipedia and

DBpedia related to fam-

ily relations and removed

them by extending DBpedia

ontology with new family

classes and by changing do-

main and range of few prop-

erties.

They worked both

on inconsistency

and incompleteness

errors with human

knowledge about a

domain.

They did not correct

errors from extraction

framework.

[17] Extended the DBpedia

ontology with UMBEL (Up-

per Mapping and Binding

Exchange layer) which is a

subset of Opencyc knowl-

edge graph to obtain dis-

joint axioms for dbpedia for

discovery of inconsistencies

in DBpedia. Author used

a MapReduce model to dis-

cover Inconsistencies in DB-

pedia.

They used a more con-

crete and restricted

external ontology to

enrich DBpedia ontol-

ogy.

The errors of external

ontology are also in-

herited and didnt fo-

cus on other two core

components of DBpe-

dia.

[18] Focused on range and

domain violations to make

language chapters other

than English language more

suitable.

A much improved

chapter of DBpedia is

used as a basis to im-

prove other chapters

as well.

They did not focus on

resolving hierarchical

errors in DBpedia on-

tology.

Literature Review 20

Contribution Strength Weakness

[19] Discussed the range vi-

olation error and proposed

the method to remove these

errors by finding the in-

consistent objects from re-

duced search space and re-

place with consistent object.

Along with discover-

ing errors, they also

proposed a suitable

approach for removing

these kind of errors

they discovered.

DBpedia ontology,

mappings and extrac-

tion framework are

not considered as the

source of errors.

2.2 Knowledge Graph Completion

This section evaluates studies addressing the incompleteness problem. The incom-

pleteness problem can also exist at both levels, ontology as well as instances.

Count and size of semantic knowledge web bases is increasing rapidly. It is diffi-

cult to maintain these knowledge bases. The study [20] provides the tool named

ORE (Ontology repairing and enrichment) to repair and enrich the ontologies.

This tool detects the problem in knowledge bases and provide guidance to re-

pair it. ORE helps to extend the ontology by using supervised machine learning

approach. Repositories (Protégé[21] and TONES) are used for testing purpose.

Interface is required for ORE to use it for analysis of knowledge bases.

Along with info boxes, wikipedia also contains useful information in article text.

However, this Information is not very much utilized in DBpedia Knowledge Graph.

Author proposed [22] an automated system to extract useful information from text

using semantic parser and coreference solver and map this information to DBpe-

dia namespace in the form of rdf triples. In first step Wikipedia markups filtering

is performed and unstructured text is provided to next step. Then the links are

extracted and semantic parsing of text is performed. Coreference resolution de-

tects conferring in text and links them. Then the link is created between mentions

Literature Review 21

and DBpedia URIs. Output is aligned in the form of triples. Then these un-

mapped triples are mapped in DBpedia namespace. More than 1,000,000 triples

were extracted from 114,000 Wikipedia articles and 189,000 triples are mapped

to DBpedia namespace. After evaluation f1-measure of 0.663 is achieved. Author

aims to investigate parallel corpora creation using entity linking.

In Wikipedia mostly the data is represented in the form of info boxes. Info boxes

contains many attributes that represent the entity. Many of the info boxes in

wikipedia are not complete and missing some template properties. In study [23]

author proposed an automated system known as iPopulator which fills in the miss-

ing data of Info boxes from the article text. It extracts parts of values indepen-

dently by detecting the structure of the values of attributes. Extraction of values

of attributes is performed in four steps. First structure analysis is performed on

values to know the structure of attribute. Then system prepares training data

set from values specified in articles. Then extractors are generated by employing

CFSs (Conditional Random Fields). Then extractors find the missing values at-

tributes from articles. Test was conducted on all available info boxes templates.

The average precision of 0.91, recall of 0.66 and f-measure of 0.73 was achieved by

system on 1727 distinct attributes of info boxes templates.

Knowledge graphs play important role in different application like question an-

swering, search engines, data integration, common sense reasoning and machine

learning. But it suffers from quality issues and have a negative impact on its

usefulness because of erroneous assertion and constraint violation. The study [24]

proposed a method to correct assertion of objects with erroneous entities/literals.

The presented framework is independent of external information or KG meta data.

It uses consistency reasoning and deep learning to correct informally annotated

literals and erroneous objects. This method corrects the object by using related

entity. Assertion of two KGs which are KG from medical domain (MED-Ent)

and DBpedia with cross domain knowledge (DBP-Lit) is evaluated. This method

achieved the Recall of 0.882 for DBP-Lit and 0.797 for MED-Ent.

Mostly the data in the world exist in the form of tables such as spreadsheets,

Literature Review 22

HTML tables or datasets. A lot of research is done to clean, recognize and cap-

ture these tables. Searching the tables is suitable as tables have relational nature.

In tables relationship of entities is described by rows. It helps to extend the Knowl-

edge graphs. Extending the knowledge graphs is known as KG Completion. The

study [25] proposed the method of KG completion through tables. The main prob-

lem here is table interpretation. Many studies focused on the information already

available in knowledge graphs. In this research two operations are performed for

interpretation. First is to link row with knowledge graph entity or link table with

a class and second is to associate column with knowledge graph relation. After

interpretation triples are extracted from tables and added to knowledge graph.

After that slot-fitting is performed in which new facts are filled in empty blocks.

Knowledge graphs are used for several tasks in data mining, machine learning,

named entity linking etc. It is the network of heterogeneous information. It is

used for many practical applications/tasks but its completeness and correctness

are not guaranteed. The study [26] addressed completeness problem as ranking

problem. This study proposed neural network that is called ProjE. This network

project entities into vectors. Ranking score of triples is calculated and ordered

in descending order. This approach has two layers and only connects directly

connected paths of length one. It doesn’t have much parameters and pre-trained

embeddings are not required. This approach shows 37% improvement on facts

checking tasks. In future complicated models like CNN or RNN can be imple-

mented with presented model.

Knowledge graphs are used in many tasks like natural language processing and

information retrieval. But these must be complete to utilize them more efficiently.

The study [27] provides the survey of studies which uses link prediction task to

complete the knowledge graphs. Semantic Information based, Translation Dis-

tance Base Model, and Neural network-based models are discussed in this survey.

After experiments author concluded that neural network with less parameter and

good structure perform well. Accuracy can be improved if multi-hop domain in-

formation can be aggregated. Use of additional information like node types, node

attributes, prior knowledge, relationship types can improve the performance of

Literature Review 23

model. This survey used two datasets FB15k-237 and FB15K.

Table 2.2 shows the contribution, strength and weakness of existing studies related

to knowledge graph completion.

Table 2.2: Analysis of studies focusing on knowledge graph completion

Contribution Strength Weakness

[20] Provides the tool

named ORE to repair and

enrich the ontologies. This

tool detects the problem

in knowledge graphs and

provide guidance to repair

it.

They provided a sys-

tematic approach for

detecting ontology re-

lated errors.

Errors in instances

could not be discov-

ered by this tool.

[23] Proposed an automated

system known as iPopula-

tor which fills in the missing

data of Info boxes from the

article text.

They used the data

from same entity page

and didn’t rely on

filling data based on

closeness with other

entities.

Missing DBpedia

classes for wikipedia

info boxes are not

added.

[24] Proposed a method

to correct assertion of ob-

jects having erroneous enti-

ties/literals by using related

entities.

They used related en-

tities rather than con-

sidering all entities of

same class.

They did not focus on

enriching the DBpe-

dia with new classes

which are present in

DBpedia.

[25] Proposed the method of

KG completion through ta-

bles by interpreting tables

and slot-fitting.

Tables are the most

authentic way of men-

tioning concrete infor-

mation in any article

other than info box,

they used tables to fill

the missing data.

They didnt discover

the incomplete map-

pings and classes.

Literature Review 24

Contribution Strength Weakness

[26] Addressed incomplete-

ness problem as ranking

problem. This study pro-

posed neural network that is

called ProjE which project

entities into vectors.

One of very few

studies which used

neural network model

to discover incom-

pleteness problem

automatically.

The proposed ap-

proach was focused

on discovering incom-

pleteness problem in

instances only.

2.3 Research Gap
The considerable research has been done to remove errors, however the studies were

not successful in discovering the hierarchical errors, missing concepts and relations

(which were present in Wikipedia) in DBpedia ontology. To evaluate whether

errors still exist or not, semantically enriched complex queries were designed and

executed. It was found that these errors still exist in DBpedia.
1. There is a need to discover the source of inconsistency and incompleteness

in DBpedia core components.

2. Ontology needs to be enriched with missing concepts and relations as per

domain knowledge

3. Domain/Range of different properties should be modified to remove errors.

4. More specifically following questions need to be answered:

(a) What are the reasons of inconsistency and incompleteness in DBpedia?

(b) How to remove these errors in order to have consistent and complete

KG?

(c) What are the missing concepts and relations in DBpedia ontology and

how to enrich it?

Summary

This chapter discussed the literature review and identified the research gap. Liter-

ature was categorized into two sections. First section was related to studies which

Literature Review 25

focused on discovering and removing the inconsistencies and second section was

related to studies which focused on knowledge graph completion.

Chapter 3

Discovery, Analysis and

Correction of Errors

3.1 Introduction

DBpedia knowledge graph needs to be investigated to find inconsistency and in-

completeness. There are two ways to investigate a KG, one is by executing different

queries to get the false results in instances and second is by anaylzing the DBpedia

ontology to get the possible errors in ontology. Both of these ways are used in

this study to discover the errors in DBpedia knowledge graph. Inconsistency and

Incompleteness are very difficult to discover in Knowledge graph because they re-

quire real world knowledge therefore a lot of automatic approaches are not feasible

to discover those errors. The proposed approach comprise of four steps, discovery

of errors, analysis of errors, solution of errors and evaluation of errors. Finally, the

solution proposed is evaluated by using the semantically enriched complex queries

which generated the errors initially. If the queries are successful in fetching the

desired results, it will prove that the proposed solution is correct. Errors were

discovered by following two methods:

1. Creation of semantically enriched complex queries which fetch inconsistent

and/or incomplete instances.

2. Analysis of Ontology to discover inconsistent and/or incomplete concepts

and relations.

26

Discovery, Analysis and Correction of Errors 27

Figure 3.1 shows the structure of experiments performed in discovering errors.

Figure 3.1: Discovery phase experiments

The experiments will be performed to answers following research questions.

1. What are the reasons of inconsistency and incompleteness in DBpedia?

2. How to remove these errors in order to have consistent and complete semantic

web?

3. What are the missing concepts and relations in DBpedia ontology and how

to enrich it?

We will answer these research questions by first discovering the semantic errors

using semantically enriched complex queries and analysis of ontology then we

will find the reasons for these errors and implement solutions to correct them.

The structure of the experiments is such that discovery, analysis and solution

are grouped according to the nature of issues/problems. In section 3.2 semantic

errors are discovered using semantically enriched complex queries. In section 3.3

semantic errors are discovered by analyzing the ontology.

Figure 3.2 shows the experimental flow of each experiment.

Figure 3.2: Experimental flow

Discovery, Analysis and Correction of Errors 28

3.2 Discovery of Semantic Errors Using Seman-

tically Enriched Complex Logic

DBpedia is an open access knowledge graph and provides a public endpoint for

queries. One way to discover semantic errors is by designing semantically enriched

complex queries which fetch contradictory results. The intuition behind this ap-

proach was to fetch results from DBpedia which could not be possible in real life.

By designing these semantically enriched complex queries, different inconsistent

and incomplete instances were discovered.

3.2.1 Multiple Birth Dates Logic for Discovering Inconsis-

tency

In real life every living thing have one birth date, so if any entity in DBpedia have

more than one birth date then the results are not consistent. Therefore below

mentioned semantically enriched complex query was designed to fetch the list of

those entities which have more than one birth date along with number of birth

dates. The number of inconsistent records which were retrieved by this query was

417.

SELECT ?person count(?dates)

WHERE {

?person dbo:birthDate ?dates.

}

Group by ?person

HAVING (COUNT(?dates) > 1)

3.2.1.1 Discovery of Multiple Birth Dates Inconsistency

BirthDate must be unique for each entity, however it was discovered that some

of DBpedia entities are showing multiple such properties. Table 1.2 shows the

DBpedia profile of entity Karen McCarron. It shows the inconsistency where

Karen have more than one birth dates which are 1968-12-20 and 2002-07-22. If

Discovery, Analysis and Correction of Errors 29

any query or operation by any user will be performed using birth date property,

then the results might be inconsistent because many of the entities will return

more than one birth dates. Such inconsistencies must be removed to make the

DBpedia a true semantic web.

3.2.1.2 Analysis of Multiple Birth Dates Inconsistency

To know where the error exists Wikipedia page of Karen was checked where it was

found that Karen McCarron page contains two info boxes, one for Karen McCarron

and other for her child Kate McCarron. Birth dates of both parent and child are

assigned to Karen McCarron in DBpedia. It was observed that all those Wikipedia

entities which have more than one info box are being merged into one resource

by DBpedia framework. In this way the location of error was traced which is the

conversion process and in particular DBpedia framework. Table 3.1 and table 3.2

shows the Wikipedia info boxes of Karen McCarron and Kate McCarron. Karen

McCarron’s birth date is 1968-12-20 and Kate McCarron’s birth date is 2002-07-22

but on DBpedia both of these birth dates are associated to Karen McCarron.

Table 3.1: Wikipedia info box Karen Frank-McCarron [9]

Info box title Karen Frank McCarron

Born

Karen Frank

December 20, 1968 (age 53)

West Germany

Other names Karen McCarron

Alma mater

University of Illinois at Urbana–

Champaign Southern Illinois University

School of Medicine0

Occupation Pathologist

Criminal status Incarcerated

Spouse(s) Paul McCarron (c. 1995–2006, div.)

Discovery, Analysis and Correction of Errors 30

Table 3.2: Wikipedia info box Kate McCarron [9]

Info box title Kate McCarron

Born

Katherine Marie McCarron

July 22, 2002

Peoria, Illinois, U.S.

Died
May 13, 2006 (aged 3)

Morton, Illinois, U.S.

Cause of death Suffocation

Resting place

Resurrection Cemetery and

Mausoleum, Peoria, Illinois,

U.S.

Nationality
American

German

Known for Murder victim

Parent(s)
Karen Frank-McCarron

Paul McCarron

3.2.1.3 Discovery of Self Parents Inconsistency

By looking at the results of multiple birth dates query different inconsistencies

were discovered. One inconsistency was that person was also mentioned as parent

of himself/herself. It can be seen that Person Karen McCarron is mentioned as

the parent of herself in the Table 3.3. When end user query any information

related to parent property, the results might be contradictory as different entities

mentioned their own self as parent in DBpedia. In table 3.3 it can be seen in

the DBpedia profile of Karen McCarron that parents of Karen McCarron are Paul

McCarron and Karen Frank-McCarron. In real life a person can not be a parent

of himself/herself and also when someone query about parents of parents then this

Discovery, Analysis and Correction of Errors 31

will create a loop where entity will point to itself as parents of parents, therefore

this inconsistency must be removed.

Table 3.3: Self parent inconsistency [8]

DBpedia page Karen McCarron

Occupation Pathologist

Other names Karen McCarron

Parents
Paul McCarron

Karen Frank-McCarron

Resting place

Resurrection Cemetery and

Mausoleum, Peoria, Illinois,

U.S.

3.2.1.4 Analysis of Self Parents Inconsistency

To understand the reason that why Karen McCarron is mentioned as parent of

herself, her Wikipedia profile was checked and it was found that as Kate McCarron

is child of Karen and info box of Kate have parent Karen therefore when these

two info boxes are combined in one resource in DBpedia then the parent of child

also becomes the parent so in this way an entity Karen McCarron becomes parent

of herself. The reason behind this inconsistency is also same as multiple birth

dates inconsistency which is merging of multiple info boxes into single resource in

DBpedia.

3.2.1.5 Discovery of Same Values for Distinct Properties Inconsistency

Another inconsistency discovered using multiple birth dates query was that the

properties which must have distinct values in real life were having same values.

Table 3.4 shows the example where spouse and parent of enitity Karen McCarron

is same which is Paul McCarron.

Discovery, Analysis and Correction of Errors 32

Table 3.4: Same values for distinct properties inconsistency [8]

DBpedia page Karen McCarron

Spouse Paul McCarron

Other names Karen McCarron

Parents
Paul McCarron

Karen Frank-McCarron

Resting place

Resurrection Cemetery and

Mausoleum, Peoria, Illinois,

U.S.

3.2.1.6 Analysis of Same Values for Distinct Properties Inconsistency

As the wikipedia page of entity Karen McCarron contains two info boxes one

for parent Karen and other for her child Kate, the parent property of Kate and

the spouse property of Karen have the same value because father of Kate is also

the husband of Karen. Therefore when these info boxes were merged into single

resource in DBpedia, all these properties were associated to Karen.

3.2.1.7 Discovery of Incorrect Association of Information Inconsistency

To discover further errors, DBpedia page and Wikipedia info box of inconsistent

entities were compared and it was found that on DBpedia some entities have such

properties which are not listed in their Wikipedia info box, infact these properties

belong to some other info box in Wikipedia. One example of this error is Helene

Demuth. Table 3.5 and table 3.6 shows the DBpedia page and Wikipedia info

box of entity Helene Demuth. The Wikipedia info box of Helene Demuth doesn’t

mention birthName but on DBpedia page birthName property is present which is

in fact the birthName of another entity Frederick Lewis Demuth.

Discovery, Analysis and Correction of Errors 33

Table 3.5: Wikipedia info box Helene Demuth [9]

Info box title Helene Demuth

Born

31 December 1820

Sankt Wendel, Principality of

Lichtenberg, Duchy of Saxe-

Coburg-Saalfeld, German

Confederation

Died

4 November 1890 (aged 69)

London, United Kingdom

Resting place Highgate Cemetery

Nationality Prussian, German

Known for

Housekeeper of Karl Marx,

later household manager and

political confidante of Fred-

erich Engels

Table 3.6: DBpedia page Helene Demuth [8]

DBpedia page Helene Demuth

Abstract

Helene Demuth (31 December

1820 – 4 November 1890) was

a German housekeeper who

worked for Jenny and Karl

Marx, and later served as the

household manager and politi-

cal confidante of Friedrich En-

gels.

Birth date
1820-12-31

1851-06-23

Birth name Henry Frederick Demuth

Discovery, Analysis and Correction of Errors 34

3.2.1.8 Analysis of Incorrect Association of Information Inconsistency

This inconsistency was discovered by comparing the Wikipedia info box of Helene

Demuth with her DBpedia page. On further analysis of Wikipedia page it was

found that there also exists more than one info boxes, Helene Demuth and her

child Frederick Lewis Demuth. Helene Demuth doesn’t mention birthName but

when both info boxes are merged, birthName of Frederick is assigned to Helene in

DBpedia. So this inconsistency also arises due to merging of multiple info boxes

into a single resource.

3.2.1.9 Solution for Inconsistencies from Multiple Birth Dates Logic

Following four types of inconsistencies were discovered from multiple birth dates

query:

1. Multiple birth dates

2. Self parents

3. Same values for distinct properties

4. Incorrect association of information

It was found that the reason for all these inconsistencies is same which is merging

of multiple Wikipedia info boxes into single resource in DBpedia. The component

of DBpedia which is responsible for this error is DBpedia framework. To remove

this error the solution is proposed that if the info boxes have different names with

respect to title of page then these must be stored as separate resource in DBpedia.

The process for modification of extraction framework is as follows:

1. Clone https://github.com/dbpedia/extraction-framework/ github repository.

2. Create new branch from Dev branch.

3. Make changes in the Extraction Framework.

Discovery, Analysis and Correction of Errors 35

4. Commit Changes

5. Send merge request after completion.

To implement this solution following steps have been performed:

1. Installation of DBpedia extraction framework

2. Understanding of different DBpedia extractors code.

3. Modifications of TemplateMappings.scala file to implement our solution.

(a) Checking if name of info box is different

//checking if node is an infobox and have different name

val isInfobox = if (node.title.decoded.contains("Infobox")) {

true

} else {

false

}

var condition4_same_entity_infoBox = true

if(isInfobox)

{

//getting name property from infobox

val allNames = node.children.filter(p => p.key == "name")

var name = subjectUri;

if(allNames.size > 0)

name = allNames(0).propertyNodeValueToPlainText

//getting subject of wikipedia page

var splittedURI = subjectUri.split("/")

var pageTitle = splittedURI(splittedURI.size - 1)

if(!name.contains(pageTitle) && !pageTitle.contains(name))

condition4_same_entity_infoBox = false

}

Discovery, Analysis and Correction of Errors 36

(b) Saving it as separate resource if names are different

// If all above conditions are met then use the main

resource, otherwise create a new one

val instanceUri = {

if ((!condition1_create_correspondingproperty) &&

(!condition2_template_exists) && condition3_subclass &&

condition4_same_entity_infoBox) subjectUri

else generateUri(subjectUri, node)

}

3.2.1.10 Evaluation of Proposed Solution

After making the proposed changes to remove inconsistencies from multiple birth

dates query, it must be verified if the inconsistencies were removed. For this

DBpedia extractor was ran in adhoc mode for single entity extraction and Karen

McCarron page was extracted using the updated code as seen in Figure 3.3

Figure 3.3: DBpedia framework adhoc page for Karen extraction

The results of this extraction process are shown in table 3.7. After extraction

it can be seen that the Karen McCarron and Kate McCarron are now stored as

Discovery, Analysis and Correction of Errors 37

separate resources and all four inconsistencies from multiple birth dates query are

hence removed.

Table 3.7: DBpedia framework Karen extraction result

Resource Property Value

http://dbpedia.

org/resource/Karen_

McCarron

http://dbpedia.org/

ontology/birthDate
1968-12-20

http://dbpedia.

org/resource/Karen_

McCarron

http://dbpedia.org/

ontology/birthPlace

http://dbpedia.

org/resource/West_

Germany

http://dbpedia.org/

resource/Karen_

McCarron__Kate_

McCarron__1

https://xmlns.com/

foaf/01/name
Kate McCarron

http://dbpedia.org/

resource/Karen_

McCarron__Kate_

McCarron__1

http://dbpedia.org/

ontology/birthDate
2002-07-22

http://dbpedia.org/

resource/Karen_

McCarron__Kate_

McCarron__1

http://dbpedia.org/

ontology/birthYear
2002

3.2.2 Same Parent and Spouse Logic for Discovering In-

consistency

The below mentioned query is designed to fetch those Person entities who have

same parent and spouse. It returns the list of Person entities having same re-

source as Parent and Spouse stored in knowledge graph. In real life parent and

http://dbpedia.org/resource/Karen_McCarron
http://dbpedia.org/resource/Karen_McCarron
http://dbpedia.org/resource/Karen_McCarron
http://dbpedia.org/ontology/birthDate
http://dbpedia.org/ontology/birthDate
http://dbpedia.org/resource/Karen_McCarron
http://dbpedia.org/resource/Karen_McCarron
http://dbpedia.org/resource/Karen_McCarron
http://dbpedia.org/ontology/birthPlace
http://dbpedia.org/ontology/birthPlace
http://dbpedia.org/resource/West_Germany
http://dbpedia.org/resource/West_Germany
http://dbpedia.org/resource/West_Germany
http://dbpedia.org/resource/Karen_McCarron__Kate_McCarron__1
http://dbpedia.org/resource/Karen_McCarron__Kate_McCarron__1
http://dbpedia.org/resource/Karen_McCarron__Kate_McCarron__1
http://dbpedia.org/resource/Karen_McCarron__Kate_McCarron__1
https://xmlns.com/foaf/01/name
https://xmlns.com/foaf/01/name
http://dbpedia.org/resource/Karen_McCarron__Kate_McCarron__1
http://dbpedia.org/resource/Karen_McCarron__Kate_McCarron__1
http://dbpedia.org/resource/Karen_McCarron__Kate_McCarron__1
http://dbpedia.org/resource/Karen_McCarron__Kate_McCarron__1
http://dbpedia.org/ontology/birthDate
http://dbpedia.org/ontology/birthDate
http://dbpedia.org/resource/Karen_McCarron__Kate_McCarron__1
http://dbpedia.org/resource/Karen_McCarron__Kate_McCarron__1
http://dbpedia.org/resource/Karen_McCarron__Kate_McCarron__1
http://dbpedia.org/resource/Karen_McCarron__Kate_McCarron__1
http://dbpedia.org/ontology/birthYear
http://dbpedia.org/ontology/birthYear

Discovery, Analysis and Correction of Errors 38

spouse cannot be same entity, therefore the above query was designed to fetch the

inconsistent results. The total number of inconsistent entities retrieved are 44.

SELECT ?person, ?parent

WHERE {

?person a dbo:Person.

?person dbo:parent ?parent.

?person dbo:spouse ?parent.

}

3.2.2.1 Discovery of Same Parent and Spouse Inconsistency

Spouse and parent are two distinct relations and one cannot be parent and spouse

of the same person, therefore a query was designed which fetched those entities

from DBpedia whose parent and spouse is same. Table 3.8 shows the list of few

person entities in DBpedia who have same parent and spouse.

Table 3.8: Same parent and spouse query results

Person Parent and Spouse

http://dbpedia.org/

resource/Ugyen_Wangchuk

http://dbpedia.org/

resource/Ashi_(title)

http://dbpedia.org/

resource/Seru_Epensia_

Cakobau

http://dbpedia.org/

resource/Adi_(title)

http://dbpedia.org/

resource/Nebettawy

http://dbpedia.org/

resource/Ramesses_II

http://dbpedia.org/

resource/Glayton_Modise

http://dbpedia.org/

resource/Frederick_Samuel_

Modise

http://dbpedia.org/resource/Ugyen_Wangchuk
http://dbpedia.org/resource/Ugyen_Wangchuk
http://dbpedia.org/resource/Ashi_(title)
http://dbpedia.org/resource/Ashi_(title)
http://dbpedia.org/resource/Seru_Epensia_Cakobau
http://dbpedia.org/resource/Seru_Epensia_Cakobau
http://dbpedia.org/resource/Seru_Epensia_Cakobau
http://dbpedia.org/resource/Adi_(title)
http://dbpedia.org/resource/Adi_(title)
http://dbpedia.org/resource/Nebettawy
http://dbpedia.org/resource/Nebettawy
http://dbpedia.org/resource/Ramesses_II
http://dbpedia.org/resource/Ramesses_II
http://dbpedia.org/resource/Glayton_Modise
http://dbpedia.org/resource/Glayton_Modise
http://dbpedia.org/resource/Frederick_Samuel_Modise
http://dbpedia.org/resource/Frederick_Samuel_Modise
http://dbpedia.org/resource/Frederick_Samuel_Modise

Discovery, Analysis and Correction of Errors 39

Person Parent and Spouse

http://dbpedia.org/

resource/Gottfried_Graf_

von_Bismarck-Schonhausen

http://dbpedia.org/

resource/House_of_Hoyos

http://dbpedia.org/

resource/Khalid_bin_Hamad_

Al_Khalifa

http://dbpedia.org/

resource/Sheikh

http://dbpedia.org/

resource/Rafi-ush-Shan

http://dbpedia.org/

resource/Nur-un-nissa_Begum

http://dbpedia.org/

resource/Amun-her-khepeshef

http://dbpedia.org/

resource/Nefertari

http://dbpedia.org/

resource/Mikhail_Prince_

of_Abkhazia

http://dbpedia.org/

resource/House_of_Dadiani

http://dbpedia.org/

resource/Lord_Arthur_John_

Henry_Somerset

http://dbpedia.org/

resource/Elizabeth_Boscawen

http://dbpedia.org/

resource/Shery_(Egypt)

http://dbpedia.org/

resource/Inet_(woman)

3.2.2.2 Analysis of Same Parent and Spouse Inconsistency

Instances of query result were analyzed that when names are written with ti-

tle prefix in Wikipedia then the DBpedia framework only stores first part which

is the title and skips the actual name of person. So there must be something

wrong in the DBpedia framework. Table 3.9 shows the Wikipedia profile of en-

tity Jigme Dorji Wangchuck which have spouse Ashi Kesang Choden and parents

Jigme Wangchuck, Ashi Phuntsho Choden where Ashi is the title in Bhutanese

language for mature women [9].

http://dbpedia.org/resource/Gottfried_Graf_von_Bismarck-Schonhausen
http://dbpedia.org/resource/Gottfried_Graf_von_Bismarck-Schonhausen
http://dbpedia.org/resource/Gottfried_Graf_von_Bismarck-Schonhausen
http://dbpedia.org/resource/House_of_Hoyos
http://dbpedia.org/resource/House_of_Hoyos
http://dbpedia.org/resource/Khalid_bin_Hamad_Al_Khalifa
http://dbpedia.org/resource/Khalid_bin_Hamad_Al_Khalifa
http://dbpedia.org/resource/Khalid_bin_Hamad_Al_Khalifa
http://dbpedia.org/resource/Sheikh
http://dbpedia.org/resource/Sheikh
http://dbpedia.org/resource/Rafi-ush-Shan
http://dbpedia.org/resource/Rafi-ush-Shan
http://dbpedia.org/resource/Nur-un-nissa_Begum
http://dbpedia.org/resource/Nur-un-nissa_Begum
http://dbpedia.org/resource/Amun-her-khepeshef
http://dbpedia.org/resource/Amun-her-khepeshef
http://dbpedia.org/resource/Nefertari
http://dbpedia.org/resource/Nefertari
http://dbpedia.org/resource/Mikhail_Prince_of_Abkhazia
http://dbpedia.org/resource/Mikhail_Prince_of_Abkhazia
http://dbpedia.org/resource/Mikhail_Prince_of_Abkhazia
http://dbpedia.org/resource/House_of_Dadiani
http://dbpedia.org/resource/House_of_Dadiani
http://dbpedia.org/resource/Lord_Arthur_John_Henry_Somerset
http://dbpedia.org/resource/Lord_Arthur_John_Henry_Somerset
http://dbpedia.org/resource/Lord_Arthur_John_Henry_Somerset
http://dbpedia.org/resource/Elizabeth_Boscawen
http://dbpedia.org/resource/Elizabeth_Boscawen
http://dbpedia.org/resource/Shery_(Egypt)
http://dbpedia.org/resource/Shery_(Egypt)
http://dbpedia.org/resource/Inet_(woman)
http://dbpedia.org/resource/Inet_(woman)

Discovery, Analysis and Correction of Errors 40

Table 3.9: Wikipedia info box Jigme Dorji Wangchuck [9]

Info box title Jigme Dorji Wangchuck

Reign 30 March 1952 – 21 July 1972

Coronation 27 October 1952

Predecessor Jigme Wangchuck

Successor Jigme Singye Wangchuck

Born

2 May 1929

Thruepang Palace, Trongsa

Died 21 July 1972 (aged 43)

Burial Cremated at Kurjey Lhakhang

Spouse Ashi Kesang Choden

Issue

Sonam Choden Wangchuk

Dechen Wangmo Wangchuk

Jigme Singye Wangchuck

Pema Lhaden Wangchuk

Kesang Wangmo Wangchuk

House Wangchuck

Father Jigme Wangchuck

Mother Ashi Phuntsho Choden

Religion Buddhism

Discovery, Analysis and Correction of Errors 41

Where as in the DBpedia profile for Jigme Dorji Wangchuck spouse and parent

is Ashi(title) so it was concluded that DBpedia framework is skipping the actual

name and storing only title of entities which have some reference page in the

Wikipedia. Table 3.10 shows the DBpedia profile of Jigme Dorji Wangchuck

where it can be seen that parent and spouse have same value which is Ashi_(title).

Table 3.10: DBpedia page Jigme Dorji Wangchuck [8]

DBpedia page Jigme Dorji Wangchuck

Parent
Jigme Wangchuk

Ashi_(title)

Predecessor Jigme Wangchuk

Spouse Ashi_(title)

Successor Jigme Singye Wangchuck

On further analysis of DBpedia extraction framework and Wikipedia info boxes it

was found that there are two reasons behind the errors discovered by same parent

and spouse query which are discussed below:

1. Extraction Rule:

By checking the backend of Wikipedia pages of different entities it was observed

that on some Wikipedia pages single quotation marks are used as Separators in any

property value. On the basis of these separators, property value must split. Table

3.11 shows the backend of Wikipedia page of Jigme Dorji Wangchuck where two

single quotation marks are used as value separators in spouse and mother property.

Discovery, Analysis and Correction of Errors 42

Table 3.11: Wikipedia info box backend Jigme Dorji Wangchuck [9]

Infobox Monarch

Name

Jigme Dorji Wangchuck
[[File:Jigme Dorji

Wangchuck Name.svg]]

Title
[[List of rulers of Bhutan|King

of Bhutan]]

Succession
[[Druk Gyalpo|King of

Bhutan]]

Reign 30 March 1952 – 21 July 1972

Predecessor [[Jigme Wangchuck]]

Successor [[Jigme Singye Wangchuck]]

Spouse

’ ’[[Ashi (title)|Ashi]]’ ’ [[Ke-

sang Choden (born 1930)|Ke-

sang Choden]]

Issue

[[Sonam Choden Wangchuck]]

 [[Dechen Wangmo

Wangchuck]]
 [[Jigme

Singye Wangchuck]]

[[Pema Lhaden Wangchuck]]

[[Kesang Wangmo

Wangchuck]]

House
[[House of

Wangchuck|Wangchuck]]

Father [[Jigme Wangchuck]]

Mother
’ ’[[Ashi (title)|Ashi]]’ ’

[[Phuntsho Choden]]

Religion [[Buddhism]]

Although two single quotation marks are used as Separators in Wikipedia but the

Discovery, Analysis and Correction of Errors 43

extraction rule used in extraction framework for splitting value doesn’t contain

single quotation marks. Following lines of code shows the extraction rule used for

splitting property value. Therefore DBpedia only take Ashi as property value and

skips the actual name part. The class responsible for splitting value is DataParser-

Config.scala.

val splitPropertyNodeRegexObject = Map (

"en" -> """<br\s*\/?>|\n| and | or | in |/|;|,"""

)

2. Post Processing Issue::

It was found that DBpedia contains property values which are violating range

of property. For example range of spouse is Person but still DBpedia contains

spouse relations with entities which are not Person. This indicates some issue

in framework where domain and range of statement is checked. DBpedia frame-

work have a separate module of post processing the statements to filter out any

statement which is violating domain and range and also check for disjoined ax-

ioms. The class responsible for this purpose is TypeConsistencyCheck.scala. In

this class an issue was found that currently all the statements are passed to reg-

ular set even if they are violating domain and range and only disjoint statements

are filtered out and stored in datasets for incorrect statements. Following is the

code snippet from TypeConsistencyCheck.scala file where datasets are assigned to

types of statements. It can be seen that untyped and nondisjoint statements are

also stored in correct dataset.

val correctDataset: Dataset = DBpediaDatasets.OntologyPropertiesObjectsCleaned

val disjointRangeDataset: Dataset =

DBpediaDatasets.OntologyPropertiesDisjointRange

val untypedRangeDataset: Dataset = correctDataset

val nonDisjointRangeDataset: Dataset = correctDataset

val disjointDomainDataset: Dataset =

DBpediaDatasets.OntologyPropertiesDisjointDomain

val untypedDomainDataset: Dataset = correctDataset

val nonDisjointDomainDataset: Dataset = correctDataset

Discovery, Analysis and Correction of Errors 44

3.2.2.3 Solution for Same Parent and Spouse Inconsistency

There are two main reasons for this inconsistency which are discussed above, to

remove this inconsistency first extraction rule and then post processing issue was

resolved.

1. Extraction Rule Correction:

To include the two single quotation marks as separators extraction rule was changed

to:

val splitPropertyNodeRegexObject = Map (

"en" -> """<br\s*\/?>|\n| and | or | in |/|;|''|,"""

)

The new extraction rule also contains two single quotation marks for splitting

value .

2. Post Processing Correction:

Previously non-disjoint and untyped statements were also stored to correct dataset

which was causing problems, to eliminate this incorrect triples were passed to other

incorrect datasets. Following is the updated code in which untyped statements are

stored in untypedDataset and nondisjoint statements which are violating domain

and range are stored in nondisjointDataset

val correctDataset: Dataset = DBpediaDatasets.OntologyPropertiesObjectsCleaned

val untypedDataset:Dataset = new Dataset("mappingbased- properties-untyped")

val nondisjointDataset:Dataset = new Dataset("mappingbased-properties-non-disjoint")

val disjointRangeDataset: Dataset = DBpediaDatasets.OntologyPropertiesDisjointRange

val untypedRangeDataset: Dataset = untypedDataset

val nonDisjointRangeDataset: Dataset = nondisjointDataset

val disjointDomainDataset: Dataset =

DBpediaDatasets.OntologyPropertiesDisjointDomain

val untypedDomainDataset: Dataset = untypedDataset

val nonDisjointDomainDataset: Dataset = nondisjointDataset

Discovery, Analysis and Correction of Errors 45

3.2.2.4 Evaluation of Proposed Solution

After impementing the proposed changes, same parent and spouse query was exe-

cuted again and the result set of inconsistent records is reduced from 44 to 4, 3 of

which are due to wrong classification of entities by extractors and reason for one

of them is unknown to us. Table 3.12 shows the list of inconsistencies which were

not removed after implementing proposed changes.

Table 3.12: Remaining inconsistent records of same parent and spouse query

Person Parent and Spouse

http://dbpedia.org/

resource/Gottfried_Graf_

von_Bismarck-Schonhausen

http://dbpedia.org/

resource/House_of_Hoyos

http://dbpedia.org/

resource/Benjamin_Bates_

IV

http://dbpedia.org/

resource/Bates_family

http://dbpedia.org/

resource/Aung_Lwin

http://dbpedia.org/

resource/Burmese_name

http://dbpedia.org/

resource/Frank_John_

William_Goldsmith

http://dbpedia.org/

resource/Nee

3.2.3 Incorrect Entity Type Logic for Discovering Incom-

pleteness

Another semantically enriched complex query is designed to fetch those entities

who are not person but still contain properties which are related to person. The

http://dbpedia.org/resource/Gottfried_Graf_von_Bismarck-Schonhausen
http://dbpedia.org/resource/Gottfried_Graf_von_Bismarck-Schonhausen
http://dbpedia.org/resource/Gottfried_Graf_von_Bismarck-Schonhausen
http://dbpedia.org/resource/House_of_Hoyos
http://dbpedia.org/resource/House_of_Hoyos
http://dbpedia.org/resource/Benjamin_Bates_IV
http://dbpedia.org/resource/Benjamin_Bates_IV
http://dbpedia.org/resource/Benjamin_Bates_IV
http://dbpedia.org/resource/Bates_family
http://dbpedia.org/resource/Bates_family
http://dbpedia.org/resource/Aung_Lwin
http://dbpedia.org/resource/Aung_Lwin
http://dbpedia.org/resource/Burmese_name
http://dbpedia.org/resource/Burmese_name
http://dbpedia.org/resource/Frank_John_William_Goldsmith
http://dbpedia.org/resource/Frank_John_William_Goldsmith
http://dbpedia.org/resource/Frank_John_William_Goldsmith
http://dbpedia.org/resource/Nee
http://dbpedia.org/resource/Nee

Discovery, Analysis and Correction of Errors 46

query returns an entity if it is not person but still have spouse property. Further

different filters are used in this query to filter out false results.

SELECT Distinct count(?person)

WHERE {

?person dbp:spouse ?val.

?person a ?type.

FILTER NOT EXISTS {?person a dbo:Person}.

FILTER NOT EXISTS {?person a dbo:FictionalCharacter}.

FILTER (!strstarts(str(?type), str“(http://dbpedia.org/class/yago))).

}

3.2.3.1 Discovery of Incompleteness

It was found that there are a lot of entities in DBpedia which contain family

relation properties but are classified as owl:Thing instead of dbo:Person. Due to

this many inaccurate results are fetched when queried because family relations like

spouse should only be applicable to dbo:Person and not owl:Thing. Thousands of

such entities are wrongly classified. Above query lists those entities which have

spouse relation but are classified as owl:Thing. The incorrect entity type query

returned 4885 results, few of them are shown in the table 3.13.

Table 3.13: Incorrect entity type query results

Person

https://dbpedia.org/resource/Barbara_Erickson_London

https://dbpedia.org/resource/Barbara_Fallis

https://dbpedia.org/resource/Baruch_Mordechai_Ezrachi

https://dbpedia.org/resource/Beatrice_Beebe

https://dbpedia.org/resource/Barbara_Schneider_(sociologist)

https://dbpedia.org/resource/Barbara_Scholz

https://dbpedia.org/resource/Baruch_Mordechai_Ezrachi

https://dbpedia.org/resource/Beatrix_Tugendhut_Gardner

https://dbpedia.org/resource/Ben_Ainslie

https:// dbpedia.org/resource/Barbara_Erickson_London
https:// dbpedia.org/resource/Barbara_Fallis
https://dbpedia.org/resource/Baruch_Mordechai_Ezrachi
https://dbpedia.org/resource/Beatrice_Beebe
https:// dbpedia.org/resource /Barbara_Schneider_(sociologist)
https://dbpedia.org/resource/Barbara_Scholz
https://dbpedia.org/resource/Baruch_Mordechai_Ezrachi
https://dbpedia.org/resource/Beatrix_Tugendhut_Gardner
https://dbpedia.org/resource/Ben_Ainslie

Discovery, Analysis and Correction of Errors 47

Person

https://dbpedia.org/resource/Benard_E._Aigbokhan

https://dbpedia.org/resource/Benjamin_Church_(physician)

https://dbpedia.org/resource/Bunyan_Bryant

https://dbpedia.org/resource/Buster_Welch

https://dbpedia.org/resource/C._Alfred_%22Chief%22_Anderson

https://dbpedia.org/resource/C._George_Boeree

https://dbpedia.org/resource/C._J._Ryan

https://dbpedia.org/resource/Capitan_Vicente_Almandos_Almonacid

Table 3.14 shows the DBpedia profile of entity Lucie Fink where it can be seen

that Lucie Fink is classified as owl:Thing and have properties which are related to

Person like spouse, nationality etc.

Table 3.14: DBpedia profile of Lucie Fink [8]

DBpedia page Lucie Fink

Type owl:Thing

Abstract

Lucinda Beatrice Fink (born

August 3, 1992), better known

as Lucie Fink, is an Ameri-

can YouTube personality and

lifestyle host. As of April 2021,

her channel has approximately

22.7 million video views and

280,000 subscribers.

Spouse
2019-09-21

Michael J. Morris

Website https://luciefink.com/

https://dbpedia.org/resource/Benard_E._Aigbokhan
https://dbpedia.org/resource/Benjamin_Church_(physician)
https://dbpedia.org/resource/Bunyan_Bryant
https://dbpedia.org/resource/Buster_Welch
https://dbpedia.org/resource/C._Alfred_%22Chief%22_Anderson
https://dbpedia.org/resource/C._George_Boeree
https://dbpedia.org/resource/C._J._Ryan
https://dbpedia.org/resource/Capitan_Vicente_Almandos_Almonacid

Discovery, Analysis and Correction of Errors 48

3.2.3.2 Analysis of Incompleteness

These incompleteness errors are about getting list of entities who are not person

but contains Person properties like spouse. In the Wikipedia profile of such enti-

ties, it was observed that these entities belong to info boxes against which there

are no DBpedia classes and hence are not mapped to DBpedia. Table 3.15 shows

the Wikipedia profile of Lucie Fink (YouTube Personality). On Wikipedia this

entity is YouTube personality while on DBpedia entity is classified as owl:Thing

because there exist no class for YouTuber in DBpedia.

Table 3.15: Wikipedia page backend of Lucie Fink [9]

Infobox YouTube personality

Name Lucie Fink

Birth name Lucinda Beatrice Fink

Birth date birth date and age|1992|8|3

Birth place
[[White Plains, New York]],

U.S.

Nationality [[United States|American]]

Spouse
marriage|Michael J. Mor-

ris|September 21, 2019

Website URL|https://luciefink.com/

Beside Info box YouTube personality, other info boxes were also discovered by

analyzing the results against which either there exist no DBpedia class or mappings

are missing. Table 3.16 shows those info boxes against which there exist no

DBpedia class and no mappings as well.

Discovery, Analysis and Correction of Errors 49

Table 3.16: Wikipedia info boxes with no classes in DBpedia

Wikipedia Info boxes with no classes in DBpedia

Info box YouTube Personality

Info box Academic

Info box Sailor

Info box Jewish leader

Info box aviator

Info box Spy

Info box rebbe

Info box pretender

Info box Latter Day Saint Biography

Info box Pharaoh

Info box Native American Leader

Info box Police Officer

However for following info boxes, there exist classes in DBpedia, only mappings

are missing:

Table 3.17: Wikipedia info boxes with no mappings in DBpedia

Wikipedia Info boxes with no mappings in DBpedia

Info box Dancer

Info box Deity

Info box person/Wikidata

3.2.3.3 Solution for Incompleteness

After the analysis phase it was known that DBpedia doesn’t contain some classes

which are responsible for these types of errors. To overcome this problem, new

DBpedia classes need to be introduced in DBpedia and after that the unmapped

Wikipedia info boxes should be mapped to newly created DBpedia classes . By

Discovery, Analysis and Correction of Errors 50

following the mentioned approach, Youtuber class was introduced in DBpedia and

then info box Youtube Personality was mapped to Youtuber class. The process

for creation of Ontology classes and properties is as follows:

1. Creation of account on http://mappings.dbpedia.org/index.php/Special:

UserLogin2

2. Another account on http://forum.dbpedia.org

3. Request for editorial rights on https://forum.dbpedia.org using username.

4. Creation of new class template and new property template on http://

mappings.dbpedia.org/index.php?title=Special%3AAllPages&from=&to=

&namespace=200

The details of newly created class in DBpedia is shown in table 3.18.

Table 3.18: Wikipedia page backend of Lucie Fink [9]

Ontology class

rdfs:label (en) Youtuber

rdfs:label (eu) youtuberra

rdfs:label (da) youtuber

rdfs:label (fr) youtubeuse

rdfs:label (hi) यूट्यबूर

rdfs:label (ar) اليوتيوب

rdfs:comment (en)

a person who uploads, pro-

duces, or appears in videos

on the video-sharing website

YouTube

rdfs:subClassOf Person

http://mappings.dbpedia.org/index.php/Special: UserLogin 2
http://mappings.dbpedia.org/index.php/Special: UserLogin 2
http://forum.dbpedia.org
http:// mappings.dbpedia.org/index.php?title=Special%3AAllPages&from=&to= &namespace=200
http:// mappings.dbpedia.org/index.php?title=Special%3AAllPages&from=&to= &namespace=200
http:// mappings.dbpedia.org/index.php?title=Special%3AAllPages&from=&to= &namespace=200

Discovery, Analysis and Correction of Errors 51

The process of mapping any wikipedia info box to DBpedia class is as follows:

1. Step 1 to step 3 of ontology classes creation process.

2. Retrieve encoded template page name from Wikipedia

3. Create a wiki page in DBpedia mapping wiki using encoded template.

4. Define the ontology class of DBpedia to which we want to map the template.

Table 3.19 shows the details of mappings created for info box Youtube Personality.

Table 3.19: Info box youtube personality mapping to youtuber class

Template mapping

mapToClass Youtuber

mappings

PropertyMapping | templateProperty =

name | ontologyProperty = foaf:name

PropertyMapping | templateProperty = web-

site | ontologyProperty = foaf:homepage

PropertyMapping | templateProperty =

birthdate|ontologyProperty = birthDate

PropertyMapping | templateProperty = na-

tionality | ontologyProperty = nationality

By following the same process, all other missing classes of discovered info boxes

are created and then all the unmapped info boxes are mapped to DBpedia classes.

12 new classes are created and 15 info boxes are mapped with just few basic

properties.

Discovery, Analysis and Correction of Errors 52

3.2.3.4 Evaluation of Proposed Solution

After creating the required classes and their mappings, incorrect entity type query

was again executed to fetch updated results which are reduced from 4885 to 72.

The reason for remaining 72 inconsistencies are related to DBpedia extractors

which are wrongly classifying the instances. Table 3.20 shows some of the re-

maining entities which are incomplete .

Table 3.20: Remaining incomplete instances

Remaining incomplete instances

https://dbpedia.org/resource/Bharata_chakravartin

https://dbpedia.org/resource/Chakreshvari

https://dbpedia.org/resource/Manasa

https://dbpedia.org/resource/Nabhi

https://dbpedia.org/resource/Oshun

https://dbpedia.org/resource/Padmavati_(Jainism)

https://dbpedia.org/resource/Rishabhanatha

https://dbpedia.org/resource/Robert_William_Fisher

https://dbpedia.org/resource/Shango

https://dbpedia.org/resource/Shiva

https://dbpedia.org/resource/Taylor_Winterstein

3.3 Discovery of Semantic Errors by Analysis of

Ontology

One way to discover semantic errors is by analysis of ontology. In this process

properties definition, their domain range and their class hierarchy was observed

for any inconsistency.

https://dbpedia.org/resource/Bharata_chakravartin
https://dbpedia.org/resource/Chakreshvari
https://dbpedia.org/resource/Manasa
https://dbpedia.org/resource/Nabhi
https://dbpedia.org/resource/Oshun
https://dbpedia.org/resource/Padmavati_(Jainism)
https://dbpedia.org/resource/Rishabhanatha
https://dbpedia.org/resource/Robert_William_Fisher
https://dbpedia.org/resource/Shango
https://dbpedia.org/resource/Shiva
https://dbpedia.org/resource/Taylor_Winterstein

Discovery, Analysis and Correction of Errors 53

3.3.1 Discovery of Incorrect Domain Inconsistency

It was discovered that domain of birthDate property is restricted to Person class

which is not true in real life because every living thing have a birthDate. Table

3.21 shows the detail of birthDate property in DBpedia where it can be seen that

its domain is Person.

Table 3.21: Birth date property data [8]

Ontology data type property

rdfs:label (en) Birth date

rdfs:label (bn) জūিদন

rdfs:label (ca) data de naixement

rdfs:label (de) Geburtsdatum

rdfs:label (el) ημερομηνία_γέννησης

rdfs:label (fr) date de naissance

rdfs:label (ga) dáta breithe

rdfs:label (ja) 生年月日

rdfs:label (nl) geboortedatum

rdfs:label (pl) data urodzenia

rdfs:domain Person

rdfs:range xsd:date

rdf:type owl:FunctionalProperty

It can be seen that domain of birthDate property is Person, similarly domain of

deathDate and other similar properties like birthPlace is also Person which in real

world is not correct. To further strengthen the view source data was checked which

is Wikipedia info box and it was found that there also exist Animal info boxes

which contain these properties like birthDate so restricting its domain to Person is

somehow incorrect. Following is the list of properties of info box Animal template

where birthDate and birthPlace properties also exist.

Discovery, Analysis and Correction of Errors 54

Table 3.22: Wikipedia info box animal

Wikipedia Info boxe Animal

name

image

Image_upright

Caption

Othername

Species

Breed

gender

birth_name

birth_date

birth_place

death_date

death_place

death_cause

resting_place

3.3.2 Analysis of Incorrect Domain Inconsistency

By the analysis of DBpedia ontology it was observed that Person class is listed

under Agent class and Animal class is listed under Eukaryote class in the Species

class. As these two classes contain a lot of similar properties so they must be

grouped under single parent class and domain of such similar properties should

be that parent class. Figure 3.4 shows the current hierarchy of these classes in

DBpedia.

Discovery, Analysis and Correction of Errors 55

Figure 3.4: DBpedia class hierarchy

3.3.3 Solution of Incorrect Domain Inconsistency
The proposed solution is to group Person and Animal class under single parent

and make domain of similar properties to that parent class. Human being is also

a type of Animal so Person class must be moved to Animal section and domain

of properties like birthDate, deathDate should be set to Animal class. Figure 3.5

shows the newly proposed hierarchy:

Figure 3.5: DBpedia updated class hierarchy

To implement this solution following steps have been performed:

Discovery, Analysis and Correction of Errors 56

1. Changing super class of Person from Agent to Animal as shown in table 3.23.

Table 3.23: DBpedia person class [8]

Ontology class

rdfs:label (el) Πληροφορίες προσώπου

rdfs:label (en) person

rdfs:label (eu) pertsona

rdfs:label (da) Person

rdfs:label (ur) شخص

rdfs:label (de) Person

rdfs:label (sl) Oseba

rdfs:label (it) persona

rdfs:label (pt) pessoa

rdfs:label (fr) personne

rdfs:label (ga) duine

rdfs:label (es) persona

rdfs:label (ja) 人_(法律)

rdfs:label (nl) persoon

rdfs:label (pl) osoba

rdfs:label (ar) شخص

rdfs:subClassOf Animal

owl:equivalentClass

foaf:Person, schema:Person, wiki-

data:Q215627, wikidata:Q5,

dul:NaturalPerson

Discovery, Analysis and Correction of Errors 57

2. Changing domain of birthDate to Animal as shown in table 3.24.

Table 3.24: DBpedia birth date property updated data [8]

Ontology data type property

rdfs:label (en) Birth date

rdfs:label (bn) জūিদন

rdfs:label (ca) data de naixement

rdfs:label (de) Geburtsdatum

rdfs:label (el) ημερομηνία_γέννησης

rdfs:label (fr) date de naissance

rdfs:label (ga) dáta breithe

rdfs:label (ja) 生年月日

rdfs:label (nl) geboortedatum

rdfs:label (pl) data urodzenia

rdfs:domain Animal

rdfs:range xsd:date

rdf:type owl:FunctionalProperty

Discovery, Analysis and Correction of Errors 58

3. Changing domain of birthPlace to Animal as shown in table 3.25.

Table 3.25: DBpedia birth place property data [8]

Ontology object property

rdfs:label (en) birth place

rdfs:label (ca) lloc de naixement

rdfs:label (de) Geburtsort

rdfs:label (el) τόπος

rdfs:label (fr) lieu de naissance

rdfs:label (ga) áit bhreithe

rdfs:label (ja) 出生地

rdfs:label (nl) geboorteplaats

rdfs:label (pl) miejsce urodzenia

rdfs:comment (en) where the person was born

rdfs:domain Animal

rdfs:range Place

rdfs:subPropertyOf dul:hasLocation

owl:equivalentPropertyschema:birthPlace, wikidata:P19

Discovery, Analysis and Correction of Errors 59

4. Changing domain of deathDate to Animal as shown in table 3.26.

Table 3.26: DBpedia death date property data [8]

Ontology object property

rdfs:label (en) death date

rdfs:label (de) Sterbedatum

rdfs:label (fr) date de décès

rdfs:label (el) ημερομηνία
rdfs:label (ja) 没年月日

rdfs:label (nl) sterfdatum

rdfs:domain Animal

rdfs:range xsd:date

rdfs:type owl:FunctionalProperty

owl:equivalentProperty
schema:deathDate, wikidata:P570,

gnd:dateOfDeath

5. Changing domain of deathPlace to Animal as shown in table 3.27.

Table 3.27: DBpedia death place property data [8]

Ontology object property

rdfs:label (en) death place

rdfs:label (de) Sterbeort

rdfs:label (fr) lieu de décès

rdfs:label (el) τόπος_θανάτου
rdfs:label (ja) 死没地

rdfs:label (nl) plaats van overlijden

rdfs:domain Animal

rdfs:range Place

rdfs:comment (en) The place where the person died

owl:equivalentProperty schema:deathPlace, wikidata:P20

rdfs:subPropertyOf dul:hasLocation

Discovery, Analysis and Correction of Errors 60

Summary

This chapter explained different experiments conducted to answer research ques-

tions. First semantic errors were discovered using semantically enriched complex

queries which included multiple birth dates query for discovering inconsistency

error, same parent and spouse query for discovering inconsistency and incorrect

entity type query for discovering incompleteness. Secondly semantic errors were

discovered by analysis of ontology which included domain inconsistency. Analysis

of these errors had been done and solutions were provided. Figure 3.6 shows the

summary of erros discovered in this study.

Figure 3.6: Discovered errors summary

Chapter 4

Evaluation of Results
4.1 Evaluation
DBpedia was introduced in 2007, however even after fifteen years it still contains

semantic errors which were not resolved previously, this study discovered such

errors and resolved them. This chapter evaluates all the corrective actions taken

to remove inconsistency and incompleteness related to ontology and instances.

For evaluation of results different test cases have been designed which compares the

errors before and after implementing proposed solutions. Each test case has been

designed for single type of error. Same process was used for evaluation purpose

which was used to discover errors. Table 4.1 illustrates description of different

test cases which shows different types of inconsistencies resolved.

Table 4.1: Description of test cases

Test Case Description

Test Case 1 Multiple birth dates inconsistency

Test Case 2 Self parents inconsistency

Test Case 3 Same values for distinct properties inconsistency

Test Case 4 Incorrect association of information inconsistency

Test Case 5 Same parent and spouse inconsistency

Test Case 6 Incompleteness error

Test Case 7 Incorrect domain inconsistency

61

Evaluation of Results 62

4.1.1 Test Case 1 (Multiple Birth Dates Inconsistency)

This test case deals with the multiple birth dates inconsistency (section 3.2.1.1.

In this test case, first the count of entities having this inconsistency was checked

and then compared with count of remaining inconsistencies after implementing

the proposed solution (section 3.2.1.9). After implementing the solution, all the

multiple birth date inconsistencies were removed (section 3.2.1.10). Table 4.2

shows the details of test case 1.

Table 4.2: Test case 1.

Test Case 1

Error name Multiple birth dates

Error type Inconsistency

Evaluation tools
DBpedia Extraction Framework &

Query Endpoint

Errors before solution 104

Remaining errors after solu-

tion
0

Error removal percentage 100%

Comments

All the inconsistent statements are

made consistent with implemented

solution.

Evaluation of Results 63

4.1.2 Test Case 2 (Self Parents Inconsistency)

This test case deals with the self parents inconsistency (section 3.2.1.3). In this

test case, first the count of entities having this inconsistency was checked and

then compared with count of remaining inconsistencies after implementing the

proposed solution (section 3.2.1.9). After implementing the solution, all the self

parents inconsistencies were removed (section 3.2.1.10). Table 4.3 shows the details

of test case 2.

Table 4.3: Test case 2.

Test Case 2

Error name Self parents

Error type Inconsistency

Evaluation tools
DBpedia Extraction Framework &

Query Endpoint

Errors before solution 95

Remaining errors after solu-

tion
0

Error removal percentage 100%

Comments

All the inconsistent statements are

made consistent with implemented

solution.

Evaluation of Results 64

4.1.3 Test Case 3 (Same Values for Distinct Properties In-

consistency)

This test case deals with the same values for distinct properties inconsistency

(section 3.2.1.5). In this test case, first the count of entities having this incon-

sistency was checked and then compared with count of remaining inconsistencies

after implementing the proposed solution (section 3.2.1.9). After implementing the

solution, all the same values for distinct properties inconsistencies were removed

(section 3.2.1.10). Table 4.4 shows the details of test case 3.

Table 4.4: Test case 3.

Test Case 3

Error name Same values for distinct properties

Error type Inconsistency

Evaluation tools
DBpedia Extraction Framework &

Query Endpoint

Errors before solution 130

Remaining errors after solu-

tion
0

Error removal percentage 100%

Comments

All the inconsistent statements are

made consistent with implemented

solution.

Evaluation of Results 65

4.1.4 Test Case 4 (Incorrect Association of Information In-

consistency)

This test case deals with the incorrect association of information inconsistency

(section 3.2.1.7). In this test case, first the count of entities having this incon-

sistency was checked and then compared with count of remaining inconsistencies

after implementing the proposed solution (section 3.2.1.9). After implementing the

solution, all the incorrect association of information inconsistencies were removed

(section 3.2.1.10). Table 4.5 shows the details of test case 4.

Table 4.5: Test case 4.

Test Case 4

Error name Incorrect association of information

Error type Inconsistency

Evaluation tools
DBpedia Extraction Framework &

Query Endpoint

Errors before solution 88

Remaining errors after solu-

tion
0

Error removal percentage 100%

Comments

All the inconsistent statements are

made consistent with implemented

solution.

Evaluation of Results 66

4.1.5 Test Case 5 (Same Parent and Spouse Inconsistency)

This test case deals with the same parent and spouse inconsistency (section 3.2.2.1).

In this test case, first the count of entities having this inconsistency was checked

and then compared with count of remaining inconsistencies after implementing

the proposed solution (section 3.2.2.3). After implementing the solution, more

than ninety percent all the same parent and spouse inconsistencies were removed

(section 3.2.2.4). Table 4.6 shows the details of test case 5.

Table 4.6: Test case 5.

Test Case 5

Error name Same parent and spouse

Error type Inconsistency

Evaluation tools
DBpedia Extraction Framework &

Query Endpoint

Errors before solution 44

Remaining errors after solu-

tion
4

Error removal percentage 90%

Comments

Three of the remaining entities are

due to incorrect classification of en-

tities by extractors.

Evaluation of Results 67

4.1.6 Test Case 6 (Incompleteness)

This test case deals with the incompleteness (section 3.2.3.1). In this test case,

first the count of entities having this inconsistency was checked and then compared

with count of remaining inconsistencies after implementing the proposed solution

(section 3.2.3.3). After implementing the solution, more than ninety eight percent

of all the incomplete instances were completed (section 3.2.3.4). Table 4.7 shows

the details of test case 6.

Table 4.7: Test case 6.

Test Case 6

Error name Incorrect entity type

Error type Incompleteness

Evaluation tools
DBpedia Extraction Framework &

Query Endpoint

Errors before solution 4885

Remaining errors after solu-

tion
72

Error removal percentage 98.5%

Comments

Seventy two remaining incomplete

instances were not resolved due to

extraction issues.

Evaluation of Results 68

4.1.7 Test Case 7 (Incorrect Domain Inconsistency)

This test case deals with the incorrect domain inconsistencies (section 3.3.1). In

this test case, first the count of ontology properties having this inconsistency was

checked and then compared with count of remaining inconsistencies after imple-

menting the proposed solution (section 3.3.3). After implementing the solution,

more than ninety eight percent of all the incorrect domain inconsistencies were

removed (section 3.3.3). Table 4.8 shows the details of test case 7.

Table 4.8: Test case 7.

Test Case 7

Error name Incorrect domain

Error type Inconsistency

Evaluation method Analysis of ontology

Errors before solution 4

Remaining errors after solu-

tion
0

Error removal percentage 100%

Comments

All four inconsistent domains were

made consistent by changing the

class hierarchy and domains.

Evaluation of Results 69

Summary

This chapter evaluated the results of solutions provided in previous chapter. Test

case 1 showed that error removal percentage of inconsistencies related to multiple

birth is 100%. Test case 2 showed that error removal percentage of inconsistencies

related to self parent is 100%. Test case 3 showed that error removal percentage

of inconsistencies related to distinct properties is also 100%. Test case 4 showed

that error removal percentage of inconsistencies related to incorrect association of

information is 100% as well. Test case 5 showed that error removal percentage of

inconsistencies related to same parent and spouse is 90%. Test case 6 showed that

error removal percentage of incomplete instances is 98%.Test case 7 showed that

error removal percentage of incorrect domain inconsistency is 100%. Figure 4.1

shows the summary of results of all experiments conducted in this research.

Figure 4.1: Results summary

Chapter 5

Conclusion and Future Work

5.1 Conclusion

Effort was made to remove semantic errors from DBpedia knowledge graph which

are very difficult to detect because they require real world knowledge. Most of the

automatic approaches miss these type of inconsistency and incompleteness issues

and also doesn’t provide the reason behind these and their possible solution so

this process must be done manually by humans. DBpedia is inconsistent because

of very small errors which in turn have a huge impact. To improve DBpedia we

proposed the approach comprising of four phases, Discovery, Analysis, Solution

and Evaluation. One may get the previously discovered inconsistencies and work

on that and skip the first phase. There exists three domain of errors, Ontology,

mappings and extraction framework. Ontology and mappings must be improved

constantly and must be reviewed by domain experts to minimize the inconsisten-

cies. Logical errors must also be removed periodically from DBpedia extraction

framework. Our Proposed approach can also be applied to other knowledge graphs.

The study discovered more than 5300 errors in DBpedia knowledge graph and 98%

of those errors are corrected, along with it twelve new concepts are introduced and

fifteen new mappings are also created.

70

Conclusion and Future Work 71

5.2 Future Work:

This methodology can also be applied to other knowledge graphs like Yago. Cur-

rently DBpedia is a shallow ontology and very less restrictions and features are

provided for classes and properties, so DBpedia ontology could also be enriched

with disjoint axioms, transitive properties, inverse properties etc so that the rea-

soning engine could also be able to detect inconsistencies in the ontology

Bibliography

[1] Dieter Fensel, Umutcan Şimşek, Kevin Angele, Elwin Huaman, Elias Kärle,

Oleksandra Panasiuk, Ioan Toma, Jürgen Umbrich, and Alexander Wahler.

Introduction: what is a knowledge graph? Springer, 2020.

[2] Heiko Paulheim. Knowledge graph refinement: A survey of approaches and

evaluation methods. Semantic web, 8(3):489–508, 2017.

[3] Sören Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cy-

ganiak, and Zachary Ives. Dbpedia: A nucleus for a web of open data. pages

722–735, 2007.

[4] Ontology (DBO) - DBpedia. retrieved july 22, 2021, from https://www.

dbpedia.org/resources/ontology/.

[5] Diego Torres, Hala Skaf-Molli, Pascal Molli, and Alicia Díaz. Discovering

wikipedia conventions using dbpedia properties. pages 115–144, 2014.

[6] Dbpedia-extraction-framework. retrieved june 22, 2021, from https://

github.com/dbpedia/extraction-framework//.

[7] Gerald Töpper, Magnus Knuth, and Harald Sack. Dbpedia ontology enrich-

ment for inconsistency detection. pages 33–40, 2012.

[8] Dbpedia profile. retrieved march 19, 2021, from https://dbpedia.org/page.

[9] Wikipedia infoboxes. retrieved march 20, 2021, from https://en.

wikipedia.org/.

72

https://www.dbpedia.org/resources/ontology/
https://www.dbpedia.org/resources/ontology/
https://github.com/dbpedia/extraction-framework//
https://github.com/dbpedia/extraction-framework//
https://dbpedia.org/page
https://en.wikipedia.org/
https://en.wikipedia.org/

Bibliography 73

[10] Marcus A. Rothenberger Samir Chatterjee Ken Peffers, Tuure Tuunanen. A

design science research methodology for information systems research. Jour-

nal of Management Information Systems, 24(3):45–77, 2007.

[11] Daniel Fleischhacker and Johanna Völker. Inductive learning of disjointness

axioms. pages 680–697, 2011.

[12] Yanfang Ma, Huan Gao, Tianxing Wu, and Guilin Qi. Learning disjoint-

ness axioms with association rule mining and its application to inconsistency

detection of linked data. pages 29–41, 2014.

[13] Mariano Rico, Nandana Mihindukulasooriya, Dimitris Kontokostas, Heiko

Paulheim, Sebastian Hellmann, and Asunción Gómez-Pérez. Predicting in-

correct mappings: a data-driven approach applied to dbpedia. pages 323–330,

2018.

[14] Daniel Caminhas, Daniel Cones, Natalie Hervieux, and Denilson Barbosa.

Detecting and correcting typing errors in dbpedia. 2019.

[15] Elena Cabrio, Julien Cojan, Serena Villata, and Fabien Gandon.

Argumentation-based inconsistencies detection for question-answering over

dbpedia. 2013.

[16] Nouman ahmad khan. handling family relations inconsistencies in lod (dbpe-

dia). capital university, 2020.

[17] Zhaohua Sheng, Xin Wang, Hong Shi, and Zhiyong Feng. Checking and

handling inconsistency of dbpedia. pages 480–488, 2012.

[18] Túlio Martins and Julio Cesar dos Reis. Mechanism for inconsistency correc-

tion in the dbpedia live. 2019.

[19] Piyawat Lertvittayakumjorn, Natthawut Kertkeidkachorn, and Ryutaro

Ichise. Correcting range violation errors in dbpedia. 2017.

[20] Jens Lehmann and Lorenz Bühmann. Ore-a tool for repairing and enriching

knowledge bases. pages 177–193, 2010.

Bibliography 74

[21] Mark Musen. The protégé project. AI Matters, 1(3):45–77, 2015.

[22] Peter Exner and Pierre Nugues. Entity extraction: From unstructured text

to dbpedia rdf triples. pages 58–69, 2012.

[23] Dustin Lange, Christoph Böhm, and Felix Naumann. Extracting structured

information from wikipedia articles to populate infoboxes. pages 1661–1664,

2010.

[24] Jiaoyan Chen, Xi Chen, Ian Horrocks, Erik B. Myklebust, and Ernesto

Jimenez-Ruiz. Correcting knowledge base assertions. pages 1537–1547, 2020.

[25] Benno Kruit, Peter Boncz, and Jacopo Urbani. Extracting novel facts from

tables for knowledge graph completion. Springer, pages 364–381, 2019.

[26] Baoxu Shi and Tim Weninger. Proje: Embedding projection for knowledge

graph completion. 31(1), 2017.

[27] Meihong Wang, Linling Qiu, and Xiaoli Wang. A survey on knowledge graph

embeddings for link prediction. Symmetry, 13(3):485, 2021.

	Author's Declaration
	Plagiarism Undertaking
	Acknowledgement
	Abstract
	List of Figures
	List of Tables
	Abbreviations
	1 Introduction
	1.1 Knowledge Graph
	1.1.1 Difference Between Knowledge Graph and Database
	1.1.2 Knowledge Graph Process and Characteristics

	1.2 DBpedia
	1.3 Structure of DBpedia
	1.3.1 Ontology:
	1.3.2 Mappings:
	1.3.3 Extraction Framework:

	1.4 Errors in DBpedia
	1.4.1 Inconsistency
	1.4.2 Incompleteness
	1.4.3 Redundancy

	1.5 Research Gap
	1.6 Research Questions
	1.7 Scope of Research
	1.8 Methodology

	2 Literature Review
	2.1 Discovering and Removing Inconsistencies
	2.2 Knowledge Graph Completion
	2.3 Research Gap

	3 Discovery, Analysis and Correction of Errors
	3.1 Introduction
	3.2 Discovery of Semantic Errors Using Semantically Enriched Complex Logic
	3.2.1 Multiple Birth Dates Logic for Discovering Inconsistency
	3.2.1.1 Discovery of Multiple Birth Dates Inconsistency
	3.2.1.2 Analysis of Multiple Birth Dates Inconsistency
	3.2.1.3 Discovery of Self Parents Inconsistency
	3.2.1.4 Analysis of Self Parents Inconsistency
	3.2.1.5 Discovery of Same Values for Distinct Properties Inconsistency
	3.2.1.6 Analysis of Same Values for Distinct Properties Inconsistency
	3.2.1.7 Discovery of Incorrect Association of Information Inconsistency
	3.2.1.8 Analysis of Incorrect Association of Information Inconsistency
	3.2.1.9 Solution for Inconsistencies from Multiple Birth Dates Logic
	3.2.1.10 Evaluation of Proposed Solution

	3.2.2 Same Parent and Spouse Logic for Discovering Inconsistency
	3.2.2.1 Discovery of Same Parent and Spouse Inconsistency
	3.2.2.2 Analysis of Same Parent and Spouse Inconsistency
	3.2.2.3 Solution for Same Parent and Spouse Inconsistency
	3.2.2.4 Evaluation of Proposed Solution

	3.2.3 Incorrect Entity Type Logic for Discovering Incompleteness
	3.2.3.1 Discovery of Incompleteness
	3.2.3.2 Analysis of Incompleteness
	3.2.3.3 Solution for Incompleteness
	3.2.3.4 Evaluation of Proposed Solution

	3.3 Discovery of Semantic Errors by Analysis of Ontology
	3.3.1 Discovery of Incorrect Domain Inconsistency
	3.3.2 Analysis of Incorrect Domain Inconsistency
	3.3.3 Solution of Incorrect Domain Inconsistency

	4 Evaluation of Results
	4.1 Evaluation
	4.1.1 Test Case 1 (Multiple Birth Dates Inconsistency)
	4.1.2 Test Case 2 (Self Parents Inconsistency)
	4.1.3 Test Case 3 (Same Values for Distinct Properties Inconsistency)
	4.1.4 Test Case 4 (Incorrect Association of Information Inconsistency)
	4.1.5 Test Case 5 (Same Parent and Spouse Inconsistency)
	4.1.6 Test Case 6 (Incompleteness)
	4.1.7 Test Case 7 (Incorrect Domain Inconsistency)

	5 Conclusion and Future Work
	5.1 Conclusion
	5.2 Future Work:

	Bibliography

